Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

On-chip networks

By: Enright Jerger, Natalie D.
Contributor(s): Peh, Li-Shiuan.
Material type: materialTypeLabelBookSeries: Synthesis lectures on computer architecture: # 8.Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool Publishers, c2009Description: 1 electronic text (xii, 127 p. : ill.) : digital file.ISBN: 9781598295856 (electronic bk.).Uniform titles: Synthesis digital library of engineering and computer science. Subject(s): Networks on a chip | Interconnection networks | Topology | Routing | Flow control | Computer architecture | Multiprocessor system on chipDDC classification: 004.1 Online resources: Abstract with links to resource Also available in print.
Contents:
Introduction -- The advent of the multi-core era -- Communication demands of multi-core architectures -- On-chip vs. off-chip networks -- Network basics: a quick primer -- Evolution to on-chip networks -- On-chip network building blocks -- Performance and cost -- Commercial on-chip network chips -- This book -- Interface with system architecture -- Shared memory networks in chip multiprocessors -- Impact of coherence protocol on network performance -- Coherence protocol requirements for the on-chip network -- Protocol-level network deadlock -- Impact of cache hierarchy implementation on network performance -- Home node and memory controller design issues -- Miss and transaction status holding registers -- Synthesized NoCs in MPSoCs -- The role of application characterization in NoC design -- Design requirements for on-chip network -- NoC synthesis -- NoC network interface standards -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Topology -- Metrics for comparing topologies -- Direct topologies: rings, meshes and Tori -- Indirect topologies: butterflies, Clos networks and fat trees -- Irregular topologies -- Splitting and merging -- Topology synthesis algorithm example -- Layout and implementation -- Concentrators -- Implication of abstract metrics on on-chip implementation -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Routing -- Types of routing algorithms -- Deadlock avoidance -- Deterministic dimension-ordered routing -- Oblivious routing -- Adaptive routing -- Adaptive turn model routing -- Implementation -- Source routing -- Node table-based routing -- Combinational circuits -- Adaptive routing -- Routing on irregular topologies -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Flow control -- Messages, packets, flits and phits -- Message-based flow control -- Circuit switching -- Packet-based flow control -- Store and forward -- Cut-through -- Flit-based flow control -- Wormhole -- Virtual channels -- Deadlock-free flow control -- Escape VCs -- Buffer backpressure -- Implementation -- Buffer sizing for turnaround time -- Reverse signaling wires -- Flow control implementation in MPSoCs -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Router microarchitecture -- Virtual channel router microarchitecture -- Pipeline -- Pipeline implementation -- Pipeline optimizations -- Buffer organization -- Switch design -- Crossbar designs -- Crossbar speedup -- Crossbar slicing -- Allocators and arbiters -- Round-robin arbiter -- Matrix arbiter -- Separable allocator -- Wavefront allocator -- Allocator organization -- Implementation -- Router floorplanning -- Buffer implementation -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Conclusions -- Gap between state-of-the-art and ideal -- Definition of ideal interconnect fabric -- Definition of state-of-the-art -- Network power-delay-throughput gap -- Key research challenges -- Low-power on-chip networks -- Beyond conventional interconnects -- Resilient on-chip networks -- NoC infrastructures -- On-chip network benchmarks -- On-chip networks conferences -- Bibliographic notes.
Abstract: With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBKE200
Total holds: 0

Mode of access: World Wide Web.

System requirements: Adobe Acrobat reader.

Part of: Synthesis digital library of engineering and computer science.

Series from website.

Includes bibliographical references (p. 105-125).

Introduction -- The advent of the multi-core era -- Communication demands of multi-core architectures -- On-chip vs. off-chip networks -- Network basics: a quick primer -- Evolution to on-chip networks -- On-chip network building blocks -- Performance and cost -- Commercial on-chip network chips -- This book -- Interface with system architecture -- Shared memory networks in chip multiprocessors -- Impact of coherence protocol on network performance -- Coherence protocol requirements for the on-chip network -- Protocol-level network deadlock -- Impact of cache hierarchy implementation on network performance -- Home node and memory controller design issues -- Miss and transaction status holding registers -- Synthesized NoCs in MPSoCs -- The role of application characterization in NoC design -- Design requirements for on-chip network -- NoC synthesis -- NoC network interface standards -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Topology -- Metrics for comparing topologies -- Direct topologies: rings, meshes and Tori -- Indirect topologies: butterflies, Clos networks and fat trees -- Irregular topologies -- Splitting and merging -- Topology synthesis algorithm example -- Layout and implementation -- Concentrators -- Implication of abstract metrics on on-chip implementation -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Routing -- Types of routing algorithms -- Deadlock avoidance -- Deterministic dimension-ordered routing -- Oblivious routing -- Adaptive routing -- Adaptive turn model routing -- Implementation -- Source routing -- Node table-based routing -- Combinational circuits -- Adaptive routing -- Routing on irregular topologies -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Flow control -- Messages, packets, flits and phits -- Message-based flow control -- Circuit switching -- Packet-based flow control -- Store and forward -- Cut-through -- Flit-based flow control -- Wormhole -- Virtual channels -- Deadlock-free flow control -- Escape VCs -- Buffer backpressure -- Implementation -- Buffer sizing for turnaround time -- Reverse signaling wires -- Flow control implementation in MPSoCs -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Router microarchitecture -- Virtual channel router microarchitecture -- Pipeline -- Pipeline implementation -- Pipeline optimizations -- Buffer organization -- Switch design -- Crossbar designs -- Crossbar speedup -- Crossbar slicing -- Allocators and arbiters -- Round-robin arbiter -- Matrix arbiter -- Separable allocator -- Wavefront allocator -- Allocator organization -- Implementation -- Router floorplanning -- Buffer implementation -- Bibliographic notes -- Case studies -- Brief state-of-the-art survey -- Conclusions -- Gap between state-of-the-art and ideal -- Definition of ideal interconnect fabric -- Definition of state-of-the-art -- Network power-delay-throughput gap -- Key research challenges -- Low-power on-chip networks -- Beyond conventional interconnects -- Resilient on-chip networks -- NoC infrastructures -- On-chip network benchmarks -- On-chip networks conferences -- Bibliographic notes.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

With the ability to integrate a large number of cores on a single chip, research into on-chip networks to facilitate communication becomes increasingly important. On-chip networks seek to provide a scalable and high-bandwidth communication substrate for multi-core and many-core architectures. High bandwidth and low latency within the on-chip network must be achieved while fitting within tight area and power budgets. In this lecture, we examine various fundamental aspects of on-chip network design and provide the reader with an overview of the current state-of-the-art research in this field.

Also available in print.

Title from PDF t.p. (viewed on August 9, 2009).

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha