000 | 01612 a2200241 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20250106120416.0 | ||
008 | 250103b xxu||||| |||| 00| 0 eng d | ||
020 | _a9783031081231 | ||
040 | _cIIT Kanpur | ||
041 | _aeng | ||
082 |
_a518 _bSt49n |
||
100 | _aStewart, David E. | ||
245 |
_aNumerical analysis _ba graduate course _cDavid E. Stewart |
||
260 |
_bSpringer _c2022 _aSwitzerland |
||
300 | _axv, 632p | ||
440 | _aCMS/CAIMS Books in mathematics | ||
490 |
_a/ edited by Karl Dilcher ...[et al.] _v; v. 4 |
||
520 | _aThis book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science. | ||
650 | _aNumerical analysis | ||
650 | _aMathematics | ||
942 | _cBK | ||
999 |
_c567318 _d567318 |