000 02687 a2200289 4500
003 OSt
005 20241125170451.0
008 241121b xxu||||| |||| 00| 0 eng d
020 _a9783031122668
040 _cIIT Kanpur
041 _aeng
082 _bC749
_a624.1834
245 _aConcrete structures deteriorated by delayed ettringite formation and alkali-silica reactions
_cAntonio C. Azevedo ... [et al.]
260 _bSpringer
_c2023
_aSwitzerland
300 _aviii, 88p
440 _aBuilding pathology and rehabilitation
490 _v; v.24
_a / edited by Vasco Peixoto de Freitas, Anibal Costa and Joao M. P. Q. Delgado
520 _aThis book discusses the behaviour of isolated concrete bottle-shaped struts affected by internal expansion reactions (ISR). For that purpose, the numerical modelling of damaged concrete was performed using the Concrete Damaged Plasticity Model (CDPM) implemented in ABAQUS and validated the model through Sankovich's tests. A procedure to automatically obtain the concrete plasticity and damage parameters, essential for CDPM, was developed in Matlab. The inputs were the characteristic compressive strength of the concrete, the equivalent length of the finite element mesh and the ratio between the plastic and inelastic compressive strains. The results showed that the CDPM could represent the load-bearing mechanisms of isolated concrete bottle-shaped struts for a range of several stress levels to which these elements may be subjected in the panels investigated. The numerical simulations for different expansion levels consistently captured the expected damage profile of the panels and theload corresponding to the formation of the first crack, the estimated crack opening, and the ultimate load. For the panels investigated, the reduction observed in the failure load reached values close to 70%, the increase of the tensile plastic deformation was more than 60%, and the maximum crack opening can reach an increase of 113% when compared with those observed experimentally in panels without internal swelling reactions The book also offers a systematic review of the current state of knowledge and it is a valuable resource for scientists, students, practitioners, and lecturers in various scientific and engineering disciplines, namely, civil and materials engineering, as well as and other interested parties.
650 _aConcrete deterioration mathematical models
650 _aConcrete construction deterioration mathematical models
650 _aEttringite
700 _aAzevedo, Antonio C.
700 _aSilva, Fernando A. N.
700 _aDelgado, Joao M. P. Q.
700 _aLira, Isaque
942 _cBK
999 _c567282
_d567282