000 | 01755 a2200229 4500 | ||
---|---|---|---|
003 | OSt | ||
020 | _a9781009100502 | ||
040 | _cIIT Kanpur | ||
041 | _aeng | ||
082 |
_a530.12 _bL326q |
||
100 | _aLarkoski, Andrew J. | ||
245 |
_aQuantum mechanics _ba mathematical introduction _cAndrew J. Larkoski |
||
260 |
_bCambridge University Press _c2023 _aCambridge |
||
300 | _axvi, 380p | ||
500 | _aFundamental constants and units | ||
520 | _aThis original and innovative textbook takes the unique perspective of introducing and solving problems in quantum mechanics using linear algebra methods, to equip readers with a deeper and more practical understanding of this fundamental pillar of contemporary physics. Extensive motivation for the properties of quantum mechanics, Hilbert space, and the SchrÃ¶dinger equation is provided through analysis of the derivative, while standard topics like the harmonic oscillator, rotations, and the hydrogen atom are covered from within the context of operator methods. Advanced topics forming the basis of modern physics research are also included, such as the density matrix, entropy, and measures of entanglement. Written for an undergraduate audience, this book offers a unique and mathematically self-contained treatment of this hugely important topic. Students are guided gently through the text by the author's engaging writing style, with an extensive glossary provided for reference and numerous homework problems to expand and develop key concepts. Online resources for instructors include a fully worked solutions manual and lecture slides. | ||
650 | _aQuantum theory | ||
650 | _aPhysics | ||
650 | _aRelativistic quantum theory | ||
650 | _aRelativity (Physics) | ||
942 | _cBK | ||
999 |
_c566728 _d566728 |