000 05578nam a2200637 i 4500
001 7873535
003 IEEE
005 20200413152923.0
006 m eo d
007 cr cn |||m|||a
008 170321s2017 caua foab 001 0 eng d
020 _a9781627052863
_qebook
020 _z9781627052924
_qprint
024 7 _a10.2200/S00757ED1V01Y201702COV011
_2doi
035 _a(CaBNVSL)swl00407234
035 _a(OCoLC)978253071
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTA1634
_b.C455 2017
082 0 4 _a006.37
_223
100 1 _aChin, Tat-Jun,
_eauthor.
245 1 4 _aThe maximum consensus problem :
_brecent algorithmic advances /
_cTat-Jun Chin and David Suter.
264 1 _a[San Rafael, California] :
_bMorgan & Claypool,
_c2017.
300 _a1 PDF (xiii, 178 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aSynthesis lectures on computer vision,
_x2153-1064 ;
_v# 11
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
504 _aIncludes bibliographical references (pages 163-173) and index.
505 8 _aAppendix -- Bibliography -- Authors' biographies -- Index.
505 8 _a4. Preprocessing for maximum consensus -- 4.1 Introduction -- 4.1.1 Guaranteed outlier removal -- 4.2 Geometrically inspired approaches -- 4.2.1 2D rigid transformation -- 4.2.2 3D rotational alignment -- 4.3 Integer linear programming approach -- 4.3.1 An integer linear program formulation for GORE -- 4.3.2 Generalised fractional models -- 4.4 Bibliographical remarks --
505 8 _a3. Exact algorithms -- 3.1 Introduction -- 3.2 Optimal line fitting -- 3.2.1 Characterization of the solution -- 3.2.2 Plane sweep method -- 3.3 Integer linear programming method -- 3.3.1 Numerical accuracy and performance -- 3.3.2 Generalized fractional models -- 3.4 Robust point set registration -- 3.4.1 Rotational alignment -- 3.4.2 Euclidean registration -- 3.5 Tractable algorithms with subset search -- 3.5.1 Characterization of the solution -- 3.5.2 Subset enumeration -- 3.6 Tree search -- 3.6.1 Existence of tree structure -- 3.6.2 Breadth first search -- 3.6.3 A* search -- 3.7 Bibliographical remarks --
505 8 _a2. Approximate algorithms -- 2.1 Introduction -- 2.2 Random sample consensus -- 2.2.1 Extensions and improvements -- 2.2.2 Data span and quasidegeneracy -- 2.3 L1 minimization -- 2.3.1 Generalized fractional models -- 2.4 Chebyshev approximation -- 2.4.1 Characterization of the Chebyshev estimate -- 2.4.2 Outlier removal with L[infinity] minimization -- 2.4.3 Generalised fractional programming -- 2.5 LP-type problems -- 2.5.1 Definition and properties -- 2.5.2 Solving LP-type problems -- 2.5.3 Outlier removal for LP-type problems -- 2.6 The K-slack method -- 2.6.1 A relaxed minimax formulation -- 2.6.2 Outlier removal with the K-slack method -- 2.7 Exact penalty method -- 2.7.1 Penalized formulation -- 2.7.2 Deterministic local refinement algorithm -- 2.8 Evaluation -- 2.9 Bibliographical remarks --
505 0 _a1. The maximum consensus problem -- 1.1 Introduction -- 1.1.1 Problem definition -- 1.1.2 What is this book about? -- 1.1.3 Road map -- 1.2 Relation to other robust fitting methods -- 1.2.1 Hough transform -- 1.2.2 M-estimator -- 1.2.3 Least median squares -- 1.3 Problem difficulty -- 1.3.1 Exact vs. approximate solutions -- 1.3.2 Computational hardness -- 1.4 Bibliographical remarks --
506 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aGoogle scholar
510 0 _aGoogle book search
510 0 _aINSPEC
510 0 _aCompendex
520 3 _aOutlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The maximum consensus problem refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.
530 _aAlso available in print.
588 _aTitle from PDF title page (viewed on March 21, 2017).
650 0 _aRobust optimization.
650 0 _aComputer vision
_xMathematical models.
653 _aoptimization
653 _aalgorithms
653 _amaximum consensus
653 _arobust fitting
700 1 _aSuter, David,
_eauthor.
776 0 8 _iPrint version:
_z9781627052924
830 0 _aSynthesis lectures on computer vision ;
_v# 11.
_x2153-1064
830 0 _aSynthesis digital library of engineering and computer science.
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=7873535
999 _c562250
_d562250