000 06646nam a2200649 i 4500
001 7465001
003 IEEE
005 20200413152921.0
006 m eo d
007 cr cn |||m|||a
008 160513s2016 caua foab 000 0 eng d
020 _a9781627056700
_qebook
020 _z9781627054621
_qprint
024 7 _a10.2200/S00711ED1V01Y201603VCP024
_2doi
035 _a(CaBNVSL)swl00406490
035 _a(OCoLC)949811486
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA402
_b.H477 2016
082 0 4 _a003
_223
245 0 0 _aHeterogenous spatial data :
_bfusion, modeling, and analysis for GIS applications /
_cGiuseppe Patanè and Michela Spagnuolo, editors.
264 1 _aSan Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_c2016.
300 _a1 PDF (xxv, 129 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aSynthesis lectures on visual computing,
_x2469-4223 ;
_v# 24
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
504 _aIncludes bibliographical references (pages 101-128).
505 0 _a1. Spatio-temporal data fusion / Roderik Lindenbergh, Roberto Giachetta, Giuseppe Patanè -- 1.1 Geospatial data: acquisition and properties -- 1.2 Spatio-temporal data fusion -- 1.3 Data alignment: registration methods -- 1.3.1 Direct georeferencing -- 1.3.2 Target and feature-based registration -- 1.3.3 Low-level feature matching -- 1.3.4 Examples: -- 1.4 Harmonize support: interpolation methods -- 1.4.1 Deterministic methods -- 1.4.2 Stochastic methods -- 1.5 Satellite time series analysis -- 1.5.1 Improving spatial and temporal resolution -- 1.5.2 Estimating missing data -- 1.5.3 Vegetation monitoring -- 1.6 Spatio-temporal data access methods -- 1.7 Discussion: sensors, software, and practical issues --
505 8 _a2. Spatial and environmental data approximation / Vibeke Skytt, Giuseppe Patanè, Oliver Barrowclough, Tor Dokken, Michela Spagnuolo -- 2.1 Data approximation -- 2.2 Spline representations and approximations -- 2.2.1 Parameterization -- 2.2.2 Tensor product splines -- 2.2.3 Locally refined splines -- 2.2.4 Spline approximations -- 2.2.5 Adapting to boundaries and features -- 2.3 Meshless approximations -- 2.3.1 Moving least-squares surfaces -- 2.3.2 Implicit approximation with radial basis functions -- 2.3.3 Kriging -- 2.3.4 Computational cost --
505 8 _a3. Feature extraction / Silvia Biasotti, Andrea Cerri, Giuseppe Patanè, Michela Spagnuolo -- 3.1 3D data analysis -- 3.1.1 Curvature evaluation -- 3.1.2 Primitive and curvature-based segmentation -- 3.1.3 3D feature descriptors -- 3.2 3D surfaces studied by means of scalar fields -- 3.2.1 Critical point-oriented characterization -- 3.2.2 Topological persistence -- 3.2.3 Contour-based characterization -- 3.2.4 Morse and Morse-Smale complexes and surface networks -- 3.2.5 Contour trees and Reeb graphs --
505 8 _a4. Applications to surface approximation and rainfall analysis / Giuseppe Patanè, Andrea Cerri, Vibeke Skytt, Simone Pittaluga, Silvia Biasotti, Davide Sobrero, Tor Dokken, Michela Spagnuolo -- 4.1 Surface approximation with LR B-splines -- 4.2 Approximation and analysis of rainfall data -- 4.3 Analysis of topological changes in GIS data --
505 8 _a5. Conclusions -- Bibliography -- Authors' biographies.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aNew data acquisition techniques are emerging and are providing fast and efficient means for multidimensional spatial data collection. Airborne LIDAR surveys, SAR satellites, stereophotogrammetry and mobile mapping systems are increasingly used for the digital reconstruction of the environment. All these systems provide extremely high volumes of raw data, often enriched with other sensor data (e.g., beam intensity). Improving methods to process and visually analyze this massive amount of geospatial and user-generated data is crucial to increase the efficiency of organizations and to better manage societal challenges. Within this context, this book proposes an up-to-date view of computational methods and tools for spatio-temporal data fusion, multivariate surface generation, and feature extraction, along with their main applications for surface approximation and rainfall analysis. The book is intended to attract interest from different fields, such as computer vision, computer graphics, geomatics, and remote sensing, working on the common goal of processing 3D data. To this end, it presents and compares methods that process and analyze the massive amount of geospatial data in order to support better management of societal challenges through more timely and better decision making, independent of a specific data modeling paradigm (e.g., 2D vector data, regular grids or 3D point clouds). We also show how current research is developing from the traditional layered approach, adopted by most GIS softwares, to intelligent methods for integrating existing data sets that might contain important information on a geographical area and environmental phenomenon. These services combine traditional map-oriented visualization with fully 3D visual decision support methods and exploit semantics-oriented information (e.g., a-priori knowledge, annotations, segmentations) when processing, merging, and integrating big pre-existing data sets.
530 _aAlso available in print.
588 _aTitle from PDF title page (viewed on May 13, 2016).
650 0 _aSpatial data infrastructures
_xMathematical models.
650 0 _aGeographic information systems
_xMathematical models.
653 _aheterogeneous spatial data
653 _aspatio-temporal data fusion
653 _amulti-variate surface generation
653 _afeature extraction
653 _aGIS applications
700 1 _aPatanè, Giuseppe.,
_eeditor.,
_eauthor.
700 1 _aSpagnuolo, Michela.,
_eeditor.,
_eauthor.
776 0 8 _iPrint version:
_z9781627054621
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on visual computing ;
_v# 24.
_x2469-4223
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=7465001
999 _c562212
_d562212