000 06196nam a2200673 i 4500
001 7007880
003 IEEE
005 20200413152916.0
006 m eo d
007 cr cn |||m|||a
008 150117s2015 caua foab 000 0 eng d
020 _a9781627055147
_qebook
020 _z9781627055130
_qprint
024 7 _a10.2200/S00616ED1V01Y201411BME054
_2doi
035 _a(CaBNVSL)swl00404603
035 _a(OCoLC)900341046
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQH513
_b.S286 2015
082 0 4 _a571.43
_223
100 1 _aSaunders, Marnie M.,
_eauthor.
245 1 0 _aMechanical testing for the biomechanical engineer :
_ba practical guide /
_cMarnie M. Saunders.
246 1 _iTitle from web site:
_aMechanical testing for the biomechanics engineer.
264 1 _aSan Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_c2015.
300 _a1 PDF (xix, 256 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aSynthesis lectures on biomedical engineering,
_x1930-0336 ;
_v# 54
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
504 _aIncludes bibliographical references (pages 243-254).
505 0 _a1. Fundamentals -- 1.1 Basic mechanics -- 1.1.1 Mechanical properties -- 1.1.2 Loading modes -- 1.1.3 Material properties and degree of anisotropy -- 1.1.4 Fracture and fatigue -- 1.1.5 Viscoelasticity -- 1.1.6 Complex stress states -- 1.1.7 Significant digits --
505 8 _a2. Accuracy and measurement tools -- 2.1 Accuracy and precision -- 2.2 Measurement tools -- 2.2.1 Steel rule -- 2.2.2 Calipers -- 2.2.3 Micrometers -- 2.2.4 Vernier scales -- 2.2.5 Additional measurement equipment -- 2.2.6 Handling issues -- 2.2.7 A practical note --
505 8 _a3. Design -- 3.1 Mechanical drawing -- 3.2 Machining -- 3.2.1 Machine shop safety -- 3.2.2 Stock materials -- 3.2.3 Design layout -- 3.2.4 The equipment -- 3.2.5 Threading -- 3.2.6 Fixture fabrication example --
505 8 _a4. Testing machine design and fabrication -- 4.1 Mechanical testing -- 4.1.1 Force measurement -- 4.1.2 Displacement measurement -- 4.2 Fabrication of a simple loading platform -- 4.2.1 Mechanical testing platforms -- 4.2.2 Development of a simple platform -- 4.2.3 Additional linear applications -- 4.3 Expanding the simple platform beyond axial motion -- 4.3.1 Torsion --
505 8 _a5. Fixture design and applications -- 5.1 Test fixtures -- 5.1.1 Design considerations -- 5.2 Fixture design and development -- 5.2.1 Bending fixtures -- 5.2.2 Tension fixtures -- 5.2.3 Compression fixtures -- 5.2.4 Torsion fixtures -- 5.2.5 Shear applications -- 5.2.6 Miscellaneous holders -- 5.2.7 Repurposing existing fixtures --
505 8 _a6. Additional considerations in a biomechanics test -- 6.1 Additional design considerations -- 6.1.1 Know the literature -- 6.1.2 ASTM standards -- 6.1.3 Model selection -- 6.1.4 Tissue care -- 6.1.5 Equipment -- 6.1.6 Specimen attachment -- 6.1.7 Potting media -- 6.1.8 Potting alignment -- 6.1.9 Potting and testing molds -- 6.1.10 Removing molds -- 6.1.11 Small-scale specimen preparation -- 6.1.12 Material selection -- 6.1.13 Data analysis --
505 8 _a7. Laboratory examples and additional equations --
505 8 _a8. Appendices: practical orthopaedic biomechanics problems -- 8.1 Example 1: Implant design: prototype, benchtop analysis -- 8.1.1 The problem -- 8.1.2 Goal -- 8.1.3 Solution -- 8.1.4 Method -- 8.1.5 Key study concepts -- 8.2 Example 2: Cadaveric comparison of allograft fixation techniques -- 8.2.1 The problem -- 8.2.2 Goal -- 8.2.3 Solution -- 8.2.4 Method -- 8.2.5 Results -- 8.2.6 Study limitations -- 8.2.7 Key study concepts -- 8.3 Example 3: Bone removal location effect in autografting: assessing fracture risk -- 8.3.1 The problem -- 8.3.2 Goal -- 8.3.3 Method -- 8.3.4 Key study concepts -- 8.4 Example 4: Diaphyseal femur fracture after proximal and distal fixation -- 8.4.1 The problem -- 8.4.2 Goal -- 8.4.3 Method -- 8.4.4 The solution -- 8.4.5 Results -- 8.4.6 Study limitations -- 8.4.7 Key study concepts -- 8.5 Example 5: Cellular biomechanics: mechanical platforms for mechanobiology -- 8.5.1 The need -- 8.5.2 Method --
505 8 _aBibliography -- Author biography.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aMechanical testing is a useful tool in the field of biomechanics. Classic biomechanics employs mechanical testing for a variety of purposes. For instance, testing may be used to determine the mechanical properties of bone under a variety of loading modes and various conditions including age and disease state. In addition, testing may be used to assess fracture fixation procedures to justify clinical approaches. Mechanical testing may also be used to test implants and biomaterials to determine mechanical strength and appropriateness for clinical purposes. While the information from a mechanical test will vary, there are basics that need to be understood to properly conduct mechanical testing. This book will attempt to provide the reader not only with the basic theory of conducting mechanical testing, but will also focus on providing practical insights and examples.
530 _aAlso available in print.
588 _aTitle from PDF title page (viewed on January 17, 2015).
650 0 _aBiomechanics.
650 0 _aTesting.
653 _abiomechanics
653 _aorthopaedics
653 _amechanical testing
776 0 8 _iPrint version:
_z9781627055130
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on biomedical engineering ;
_v# 54.
_x1930-0336
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=7007880
999 _c562113
_d562113