000 05472nam a2200661 i 4500
001 7036193
003 IEEE
005 20200413152916.0
006 m eo d
007 cr cn |||m|||a
008 150117s2015 caua foab 000 0 eng d
020 _a9781627056465
_qebook
020 _z9781627056458
_qprint
024 7 _a10.2200/S00611ED1V01Y201411CAC030
_2doi
035 _a(CaBNVSL)swl00404601
035 _a(OCoLC)900340877
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA76.9.A73
_bS526 2015
082 0 4 _a004.22
_223
100 1 _aSjälander, Magnus,
_d1977-,
_eauthor.
245 1 0 _aPower-efficient computer architectures :
_brecent advances /
_cMagnus Själander, Margaret Martonosi, Stefanos Kaxiras.
264 1 _aSan Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_c2015.
300 _a1 PDF (xi, 84 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aSynthesis lectures on computer architecture,
_x1935-3243 ;
_v# 30
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
504 _aIncludes bibliographical references (pages 61-81).
505 0 _a1. Introduction -- 1.1 From the beginning -- 1.2 The end of Dennard scaling and the switch to multicores -- 1.3 Dark silicon, the utilization wall, and the rise of the heterogeneous parallelism -- 1.4 Other issues and future directions -- 1.5 About the book -- 1.5.1 Differences from the prior synthesis lecture [103] -- 1.5.2 Target audience --
505 8 _a2. Voltage and frequency management -- 2.1 Technology background and trends -- 2.1.1 Relation of V and f -- 2.1.2 Technology solutions -- 2.1.3 DVFS latency -- 2.1.4 DVFS granularity -- 2.2 Models of frequency vs. performance and power -- 2.2.1 Analytical models -- 2.2.2 Correlation-based power models -- 2.2.3 A combined power and performance model -- 2.3 OS-managed DVFS techniques -- 2.3.1 Discovering and exploiting deadlines -- 2.3.2 Linux DVFS governors -- 2.4 Parallelism and criticality -- 2.4.1 Thread- and task-level criticality: static scheduling -- 2.4.2 Thread- and task-level criticality: dynamic scheduling -- 2.4.3 Criticality -- 2.5 Chapter summary --
505 8 _a3. Heterogeneity and specialization -- 3.1 Dark silicon -- 3.1.1 Dark silicon analysis and models -- 3.1.2 Designing for dark silicon: brief examples -- 3.1.3 The sentiments against dark silicon -- 3.2 Heterogeneity in on-chip CPUs -- 3.2.1 Current industry approaches -- 3.2.2 Research and future trends -- 3.3 Single-ISA configurable heterogeneity -- 3.4 Mixing GPUs and CPUs -- 3.4.1 CPU-GPU pairs: the power-performance rationale -- 3.4.2 Industry examples -- 3.4.3 Selected research examples -- 3.5 Accelerators -- 3.5.1 Background -- 3.5.2 Selected research -- 3.5.3 Industry examples -- 3.6 Reliability vs. energy tradeoffs -- 3.7 Chapter summary --
505 8 _a4. Communication and memory systems -- 4.1 The energy cost of data motion: a holistic view -- 4.2 Power awareness in on-chip interconnect: techniques and trends -- 4.2.1 Background and industry state -- 4.2.2 Power efficiency of interconnect links -- 4.2.3 Exploiting emerging technologies to improve power efficiency -- 4.3 Power awareness in data storage: caches and scratchpads -- 4.3.1 Cache hierarchies and power efficiency -- 4.3.2 Cache associativity and its implication on power -- 4.3.3 Cache resizing and static power -- 4.3.4 Cache coherence -- 4.3.5 The power implications of scratchpad memories -- 4.4 Chapter summary --
505 8 _a5. Conclusions -- 5.1 Future trends: technology challenges and drivers -- 5.2 Future trends: emerging applications and domains -- 5.3 Final summary -- Bibliography -- Authors' biographies.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aAs Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.
530 _aAlso available in print.
588 _aTitle from PDF title page (viewed on January 17, 2015).
650 0 _aComputer architecture.
650 0 _aElectronic digital computers
_xPower supply.
650 0 _aElectric power
_xConservation.
653 _apower
653 _aarchitecture
653 _aparallelism
653 _aheterogeneity
700 1 _aMartonosi, Margaret.,
_eauthor.
700 1 _aKaxiras, Stefanos.,
_eauthor.
776 0 8 _iPrint version:
_z9781627056458
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures in computer architecture ;
_v# 30.
_x1935-3243
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=7036193
999 _c562111
_d562111