000 07170nam a2200829 i 4500
001 6812846
003 IEEE
005 20200413152912.0
006 m eo d
007 cr cn |||m|||a
008 131113s2014 caua foab 001 0 eng d
020 _a9781627051163
_qebook
020 _z9781627051156
_qpaperback
024 7 _a10.2200/S00527ED1V01Y201308DTM037
_2doi
035 _a(CaBNVSL)swl00402944
035 _a(OCoLC)862937428
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aHM742
_b.C445 2014
082 0 4 _a006.754
_223
090 _a
_bMoCl
_e201308DTM037
100 1 _aChen, Wei.,
_eauthor.
245 1 0 _aInformation and influence propagation in social networks /
_cWei Chen, Laks V.S. Lakshmanan, Carlos Castillo.
264 1 _aSan Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_c2014.
300 _a1 PDF (xv, 161 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aSynthesis lectures on data management,
_x2153-5426 ;
_v# 37
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
500 _aSeries from website.
504 _aIncludes bibliographical references (pages 143-155) and index.
505 0 _a1. Introduction -- 1.1 Social networks and social influence -- 1.1.1 Examples of social networks -- 1.1.2 Examples of information propagation -- 1.2 Social influence examples -- 1.3 Social influence analysis applications -- 1.4 The flip side -- 1.5 Outline of this book --
505 8 _a2. Stochastic diffusion models -- 2.1 Main progressive models -- 2.1.1 Independent cascade model -- 2.1.2 Linear threshold model -- 2.1.3 Submodularity and monotonicity of influence spread function -- 2.1.4 General threshold model and general cascade model -- 2.2 Other related models -- 2.2.1 Epidemic models -- 2.2.2 Voter model -- 2.2.3 Markov random field model -- 2.2.4 Percolation theory --
505 8 _a3. Influence maximization -- 3.1 Complexity of influence maximization -- 3.2 Greedy approach to influence maximization -- 3.2.1 Greedy algorithm for influence maximization -- 3.2.2 Empirical evaluation of (G,k) -- 3.3 Scalable influence maximization -- 3.3.1 Reducing the number of influence spread evaluations -- 3.3.2 Speeding up influence computation -- 3.3.3 Other scalable influence maximization schemes --
505 8 _a4. Extensions to diffusion modeling and influence maximization -- 4.1 A data-based approach to influence maximization -- 4.2 Competitive influence modeling and maximization -- 4.2.1 Model extensions for competitive influence diffusion -- 4.2.2 Maximization problems for competitive influence diffusion -- 4.2.3 Endogenous competition -- 4.2.4 A new frontier, the host perspective -- 4.3 Influence, adoption, and profit -- 4.3.1 Influence vs. adoption -- 4.3.2 Influence vs. profit -- 4.4 Other extensions --
505 8 _a5. Learning propagation models -- 5.1 Basic models -- 5.2 IC model -- 5.3 Threshold models -- 5.3.1 Static models -- 5.3.2 Does influence remain static? -- 5.3.3 Continuous time models -- 5.3.4 Discrete time models -- 5.3.5 Are all objects equally influence prone? -- 5.3.6 Algorithms -- 5.3.7 Experimental validation -- 5.3.8 Discussion --
505 8 _a6. Data and software for information/influence: propagation research -- 6.1 Types of datasets -- 6.2 Propagation of information "memes" -- 6.2.1 Microblogging -- 6.2.2 Newspapers/blogs/etc. -- 6.3 Propagation of other actions -- 6.3.1 Consumption/appraisal platforms -- 6.3.2 User-generated content sharing/voting -- 6.3.3 Community membership as action -- 6.3.4 Cross-provider data -- 6.3.5 Phone logs -- 6.4 Network-only datasets -- 6.4.1 Citation networks -- 6.4.2 Other networks -- 6.5 Other off-line datasets -- 6.6 Publishing your own datasets -- 6.7 Software tools -- 6.7.1 Graph software tools -- 6.7.2 Propagation software tools -- 6.7.3 Visualization -- 6.8 Conclusions --
505 8 _a7. Conclusion and challenges -- 7.1 Application-specific challenges -- 7.1.1 Prove value for advertising/marketing -- 7.1.2 Learn to design for virality -- 7.1.3 Correct for sampling biases -- 7.1.4 Contribute to other applications -- 7.2 Technical challenges -- 7.3 Conclusions --
505 8 _aA. Notational conventions -- Bibliography -- Authors' biographies -- Index.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aResearch on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization.
530 _aAlso available in print.
588 _aTitle from PDF title page (viewed on November 13, 2013).
650 0 _aOnline social networks.
650 0 _aSocial influence
_xMathematical models.
653 _asocial networks
653 _asocial influence
653 _ainformation and influence diffusion
653 _astochastic diffusion models
653 _ainfluence maximization
653 _alearning of propagation models
653 _aviral marketing
653 _acompetitive influence diffusion
653 _agame theory
653 _acomputational complexity
653 _aapproximation algorithms
653 _aheuristic algorithms
653 _ascalability
700 1 _aLakshmanan, Laks V. S.,
_d1959-,
_eauthor.
700 1 _aCastillo, Carlos,
_d1977-,
_eauthor.
776 0 8 _iPrint version:
_z9781627051156
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on data management ;
_v# 37.
_x2153-5426
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=6812846
856 4 0 _3Abstract with links to full text
_uhttp://dx.doi.org/10.2200/S00527ED1V01Y201308DTM037
999 _c562033
_d562033