000 08404nam a2200745 i 4500
001 6813523
003 IEEE
005 20200413152905.0
006 m eo d
007 cr cn |||m|||a
008 120324s2012 caua foab 000 0 eng d
020 _a9781608457816 (electronic bk.)
020 _z9781608457809 (pbk.)
024 7 _a10.2200/S00377ED1V01Y201202MAS012
_2doi
035 _a(CaBNVSL)swl00400542
035 _a(OCoLC)779218801
040 _aCaBNVSL
_cCaBNVSL
_dCaBNVSL
050 4 _aTA347.D45
_bW274 2012
082 0 4 _a620.00151535
_223
100 1 _aWatts, Robert G.
245 1 0 _aEssentials of applied mathematics for engineers and scientists
_h[electronic resource] /
_cRobert G. Watts.
250 _a2nd ed.
260 _aSan Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_cc2012.
300 _a1 electronic text (xi, 185 p.) :
_bill., digital file.
490 1 _aSynthesis lectures on mathematics and statistics,
_x1938-1751 ;
_v# 12
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
500 _aSeries from website.
504 _aIncludes bibliographical references.
505 0 _a1. Partial differential equations in engineering -- 1.1 Introductory comments -- 1.2 Fundamental concepts -- Problems -- 1.3 The heat conduction (or diffusion) equation -- 1.3.1 Rectangular Cartesian coordinates -- 1.3.2 Cylindrical coordinates -- 1.3.3 Spherical coordinates -- The Laplacian operator -- 1.3.4 Boundary conditions -- 1.4 The vibrating string -- 1.4.1 Boundary conditions -- 1.5 Vibrating membrane -- 1.6 Longitudinal displacements of an elastic bar -- Further reading --
505 8 _a2. The Fourier method: separation of variables -- 2.1 Heat conduction -- 2.1.1 Scales and dimensionless variables -- 2.1.2 Separation of variables -- 2.1.3 Superposition -- 2.1.4 Orthogonality -- 2.1.5 Lessons -- Problems -- 2.1.6 Scales and dimensionless variables -- 2.1.7 Separation of variables -- 2.1.8 Choosing the sign of the separation constant -- 2.1.9 Superposition -- 2.1.10 Orthogonality -- 2.1.11 Lessons -- 2.1.12 Scales and dimensionless variables -- 2.1.13 Getting to one nonhomogeneous condition -- 2.1.14 Separation of variables -- 2.1.15 Choosing the sign of the separation constant -- 2.1.16 Superposition -- 2.1.17 Orthogonality -- 2.1.18 Lessons -- 2.1.19 Scales and dimensionless variables -- 2.1.20 Relocating the nonhomogeneity -- 2.1.21 Separating variables -- 2.1.22 Superposition -- 2.1.23 Orthogonality -- 2.1.24 Lessons -- Problems -- 2.2 Vibrations -- 2.2.1 Scales and dimensionless variables -- 2.2.2 Separation of variables -- 2.2.3 Orthogonality -- 2.2.4 Lessons -- Problems -- Further reading --
505 8 _a3. Orthogonal sets of functions -- 3.1 Vectors -- 3.1.1 Orthogonality of vectors -- 3.1.2 Orthonormal sets of vectors -- 3.2 Functions -- 3.2.1 Orthonormal sets of functions and Fourier series -- 3.2.2 Best approximation -- 3.2.3 Convergence of Fourier series -- 3.2.4 Examples of Fourier series -- Problems -- 3.3 Sturm-Liouville problems: orthogonal functions -- 3.3.1 Orthogonality of eigenfunctions -- Problems -- Further reading --
505 8 _a4. Series solutions of ordinary differential equations -- 4.1 General series solutions -- 4.1.1 Definitions -- 4.1.2 Ordinary points and series solutions -- 4.1.3 Lessons: finding series solutions for differential equations with ordinary points -- Problems -- 4.1.4 Regular singular points and the method of frobenius -- 4.1.5 Lessons: finding series solution for differential equations with regular singular points -- 4.1.6 Logarithms and second solutions -- Problems -- 4.2 Bessel functions -- 4.2.1 Solutions of Bessel's equation -- Here are the rules -- 4.2.2 Fourier-Bessel series -- Problems -- 4.3 Legendre functions -- 4.4 Associated Legendre functions -- Problems -- Further reading --
505 8 _a5. Solutions using Fourier series and integrals -- 5.1 Conduction (or diffusion) problems -- 5.1.1 Time-dependent boundary conditions -- 5.2 Vibrations problems -- Problems -- 5.3 Fourier integrals -- Problem -- Further reading --
505 8 _a6. Integral transforms: the Laplace transform -- 6.1 The Laplace transform -- 6.2 Some important transforms -- 6.2.1 Exponentials -- 6.2.2 Shifting in the s -domain -- 6.2.3 Shifting in the time domain -- 6.2.4 Sine and cosine -- 6.2.5 Hyperbolic functions -- 6.2.6 Powers of t: tm -- 6.2.7 Heaviside step -- 6.2.8 The Dirac Delta function -- 6.2.9 Transforms of derivatives -- 6.2.10 Laplace transforms of integrals -- 6.2.11 Derivatives of transforms -- 6.3 Linear ordinary differential equations with constant coefficients -- 6.4 Some important theorems -- 6.4.1 Initial value theorem -- 6.4.2 Final value theorem -- 6.4.3 Convolution -- 6.5 Partial fractions -- 6.5.1 Nonrepeating roots -- 6.5.2 Repeated roots -- 6.5.3 Quadratic factors: complex roots -- Problems -- Further reading --
505 8 _a7. Complex variables and the Laplace inversion integral -- 7.1 Basic properties -- 7.1.1 Limits and differentiation of complex variables: 7.1.1 -- Analytic functions -- Integrals -- 7.1.2 The Cauchy integral formula -- Problems --
505 8 _a8. Solutions with Laplace transforms -- 8.1 Mechanical vibrations -- Problems -- 8.2 Diffusion or conduction problems -- Problems -- 8.3 Duhamel's theorem -- Problems -- Further reading --
505 8 _a9. Sturm-Liouville transforms -- 9.1 A preliminary example: Fourier sine transform -- 9.2 Generalization: the Sturm-Liouville transform: theory -- 9.3 The inverse transform -- Problems -- Further reading --
505 8 _a10. Introduction to perturbation methods -- 10.1 Examples from algebra -- 10.1.1 Regular perturbation -- 10.1.2 Singular perturbation --
505 8 _a11. Singular perturbation theory of differential equations --
505 8 _aAppendix A. The roots of certain transcendental equations -- Appendix B. -- Author's biography.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aThe second edition of this popular book on practical mathematics for engineers includes new and expanded chapters on perturbation methods and theory. This is a book about linear partial differential equations that are common in engineering and the physical sciences. It will be useful to graduate students and advanced undergraduates in all engineering fields as well as students of physics, chemistry, geophysics and other physical sciences and professional engineers who wish to learn about how advanced mathematics can be used in their professions. The reader will learn about applications to heat transfer, fluid flow and mechanical vibrations. The book is written in such a way that solution methods and application to physical problems are emphasized. There are many examples presented in detail and fully explained in their relation to the real world. References to suggested further reading are included. The topics that are covered include classical separation of variables and orthogonal functions, Laplace transforms, complex variables and Sturm-Liouville transforms. This second edition includes two new and revised chapters on perturbation methods, and singular perturbation theory of differential equations.
530 _aAlso available in print.
588 _aTitle from PDF t.p. (viewed on March 24, 2012).
650 0 _aEngineering mathematics.
650 0 _aDifferential equations
_xNumerical solutions.
653 _aEngineering mathematics
653 _aseparation of variables
653 _aorthogonal functions
653 _aLaplace transforms
653 _acomplex variables and Sturm-Liouville transforms
653 _adifferential equations
653 _aperturbation methods
653 _aperturbation theory
776 0 8 _iPrint version:
_z9781608457809
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on mathematics and statistics ;
_v# 12.
_x1938-1751
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=6813523
999 _c561899
_d561899