000 07718nam a2200889 i 4500
001 6813408
003 IEEE
005 20200413152902.0
006 m eo d
007 cr cn |||m|||a
008 110423s2011 caua foab 000 0 eng d
020 _a9781598299694 (electronic bk.)
020 _z9781598299687 (pbk.)
024 7 _a10.2200/S00332ED1V01Y201103AIM011
_2doi
035 _a(CaBNVSL)gtp00547895
035 _a(OCoLC)720114130
040 _aCaBNVSL
_cCaBNVSL
_dCaBNVSL
050 4 _aTA1634
_b.G728 2011
082 0 4 _a006.37
_222
100 1 _aGrauman, Kristen Lorraine,
_d1979-
245 1 0 _aVisual object recognition
_h[electronic resource] /
_cKristen Grauman, Bastian Leibe.
260 _aSan Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_cc2011.
300 _a1 electronic text (xvii, 163 p.) :
_bill., digital file.
490 1 _aSynthesis lectures on artificial intelligence and machine learning,
_x1939-4616 ;
_v# 11
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
500 _aSeries from website.
504 _aIncludes bibliographical references (p. 133-162).
505 0 _aPreface -- Acknowledgments -- Figure credits --
505 8 _a1. Introduction -- Overview -- Challenges -- The state of the art --
505 8 _a2. Overview: recognition of specific objects -- Global image representations -- Local feature representations --
505 8 _a3. Local features: detection and description -- Introduction -- Detection of interest points and regions -- Keypoint localization -- Scale invariant region detection -- Affine covariant region detection -- Orientation normalization -- Summary of local detectors -- Local descriptors -- The SIFT descriptor -- The SURF detector/descriptor -- Concluding remarks --
505 8 _a4. Matching local features -- Efficient similarity search -- Tree-based algorithms -- Hashing-based algorithms and binary codes -- A rule of thumb for reducing ambiguous matches -- Indexing features with visual vocabularies -- Creating a visual vocabulary -- Vocabulary trees -- Choices in vocabulary formation -- Inverted file indexing -- Concluding remarks --
505 8 _a5. Geometric verification of matched features -- Estimating geometric models -- Estimating similarity transformations -- Estimating affine transformations -- Homography estimation -- More general transformations -- Dealing with outliers -- RANSAC -- Generalized Hough transform -- Discussion --
505 8 _a6. Example systems: specific-object recognition -- Image matching -- Object recognition -- Large-scale image retrieval -- Mobile visual search -- Image auto-annotation -- Concluding remarks --
505 8 _a7. Overview: recognition of generic object categories --
505 8 _a8. Representations for object categories -- Window-based object representations -- Pixel intensities and colors -- Window descriptors: global gradients and texture -- Patch descriptors: local gradients and texture -- A hybrid representation: bags of visual words -- Contour and shape features -- Feature selection -- Part-based object representations -- Overview of part-based models -- Fully-connected models: the constellation model -- Star graph models -- Mixed representations -- Concluding remarks --
505 8 _a9. Generic object detection: finding and scoring candidates -- Detection via classification -- Speeding up window-based detection -- Limitations of window-based detection -- Detection with part-based models -- Combination classifiers -- Voting and the generalized Hough transform -- RANSAC -- Generalized distance transform --
505 8 _a10. Learning generic object category models -- Data annotation -- Learning window-based models -- Specialized similarity measures and kernels -- Learning part-based models -- Learning in the constellation model -- Learning in the implicit shape model -- Learning in the pictorial structure model --
505 8 _a11. Example systems: generic object recognition -- The Viola-Jones face detector -- Training process -- Recognition process -- Discussion -- The HOG person detector -- Bag-of-words image classification -- Training process -- Recognition process -- Discussion -- The implicit shape model -- Training process -- Recognition process -- Vote backprojection and top-down segmentation -- Hypothesis verification -- Discussion -- Deformable part-based models -- Training process -- Recognition process -- Discussion --
505 8 _a12. Other considerations and current challenges -- Benchmarks and datasets -- Context-based recognition -- Multi-viewpoint and multi-aspect recognition -- Role of video -- Integrated segmentation and recognition -- Supervision considerations in object category learning -- Using weakly labeled image data -- Maximizing the use of manual annotations -- Unsupervised object discovery -- Language, text, and images --
505 8 _a13. Conclusions -- Bibliography -- Authors' biographies.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aThe visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization.
530 _aAlso available in print.
588 _aTitle from PDF t.p. (viewed on April 23, 2011).
650 0 _aComputer vision.
650 0 _aPattern recognition systems.
653 _aGlobal representations versus local descriptors
653 _aDetection and description of local invariant features
653 _aEfficient algorithms for matching local features
653 _aTree-based and hashing-based search algorithms
653 _aVisual vocabularies and bags-of-words
653 _aMethods to verify geometric consistency according to parameterized geometric transformations
653 _aDealing with outliers in correspondences
653 _aRANSAC and the Generalized Hough transform
653 _aWindow-based descriptors
653 _aHistograms of oriented gradients and rectangular features
653 _aPart-based models
653 _aStar graph models and fully connected constellations
653 _aPyramid match kernels
653 _aDetection via sliding windows
653 _aHough voting
653 _aGeneralized distance transform
653 _aImplicit Shape Model
653 _aDeformable Part-based Model
700 1 _aLeibe, Bastian.
776 0 8 _iPrint version:
_z9781598299687
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on artificial intelligence and machine learning,
_x1939-4616 ;
_v# 11.
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=6813408
999 _c561839
_d561839