000 01987nam a2200217 4500
005 20190129154327.0
008 190108b xxu||||| |||| 00| 0 eng d
020 _a9781470425623
040 _cIIT Kanpur
041 _aeng
082 _a519.72
_bV712t
100 _aVillani, Cedric
245 _aTopics in optimal transportation
_cCedric Villani
260 _aProvidence
_bAmerican Mathematical Society
_c2003
300 _axiv, 370p
440 _aGraduate studies in mathematics; v.58
520 _aThis is the first comprehensive introduction to the theory of mass transportation with its many--and sometimes unexpected--applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of "optimal transportation" (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
650 _aTransportation problems (Programming)
650 _aMonge-Ampere equations
942 _cBK
999 _c560041
_d560041