000 | 01326 a2200181 4500 | ||
---|---|---|---|
020 | _a9783319263649 | ||
040 | _cIIT Kanpur | ||
041 | _aeng | ||
082 |
_a530.12 _bL967q |
||
100 | _aLudyk, Gunter | ||
245 |
_aQuantum mechanics in matrix form _cGunter Ludyk |
||
260 |
_bSpringer _c2018 _aSwitzerland |
||
300 | _axiii, 214p | ||
520 | _aSchrödinger's wavThis book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of e mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica. | ||
650 | _aScience -- Energy | ||
650 | _aScience -- Mechanics -- General. | ||
942 | _cBK | ||
999 |
_c558380 _d558380 |