000 03671nam a22005295i 4500
001 978-3-540-77533-1
003 DE-He213
005 20161121231215.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540775331
_9978-3-540-77533-1
024 7 _a10.1007/978-3-540-77533-1
_2doi
050 4 _aQA8.9-10.3
072 7 _aPBC
_2bicssc
072 7 _aPBCD
_2bicssc
072 7 _aMAT018000
_2bisacsh
082 0 4 _a511.3
_223
100 1 _aKohlenbach, Ulrich.
_eauthor.
245 1 0 _aApplied Proof Theory: Proof Interpretations and Their Use in Mathematics
_h[electronic resource] /
_cby Ulrich Kohlenbach.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _aXX, 536 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _aUnwinding proofs (‘Proof Mining’) -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel’s functional (‘Dialectica’) interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments.
520 _aUlrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. .
650 0 _aMathematics.
650 0 _aApproximation theory.
650 0 _aFunctional analysis.
650 0 _aOperator theory.
650 0 _aMathematical logic.
650 1 4 _aMathematics.
650 2 4 _aMathematical Logic and Foundations.
650 2 4 _aMathematics, general.
650 2 4 _aApproximations and Expansions.
650 2 4 _aOperator Theory.
650 2 4 _aFunctional Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540775324
830 0 _aSpringer Monographs in Mathematics,
_x1439-7382
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-77533-1
912 _aZDB-2-SMA
950 _aMathematics and Statistics (Springer-11649)
999 _c510130
_d510130