000 | 03671nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-540-77533-1 | ||
003 | DE-He213 | ||
005 | 20161121231215.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2008 gw | s |||| 0|eng d | ||
020 |
_a9783540775331 _9978-3-540-77533-1 |
||
024 | 7 |
_a10.1007/978-3-540-77533-1 _2doi |
|
050 | 4 | _aQA8.9-10.3 | |
072 | 7 |
_aPBC _2bicssc |
|
072 | 7 |
_aPBCD _2bicssc |
|
072 | 7 |
_aMAT018000 _2bisacsh |
|
082 | 0 | 4 |
_a511.3 _223 |
100 | 1 |
_aKohlenbach, Ulrich. _eauthor. |
|
245 | 1 | 0 |
_aApplied Proof Theory: Proof Interpretations and Their Use in Mathematics _h[electronic resource] / _cby Ulrich Kohlenbach. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 |
_aXX, 536 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
505 | 0 | _aUnwinding proofs (‘Proof Mining’) -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel’s functional (‘Dialectica’) interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments. | |
520 | _aUlrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. . | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aApproximation theory. | |
650 | 0 | _aFunctional analysis. | |
650 | 0 | _aOperator theory. | |
650 | 0 | _aMathematical logic. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aMathematical Logic and Foundations. |
650 | 2 | 4 | _aMathematics, general. |
650 | 2 | 4 | _aApproximations and Expansions. |
650 | 2 | 4 | _aOperator Theory. |
650 | 2 | 4 | _aFunctional Analysis. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783540775324 |
830 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-540-77533-1 |
912 | _aZDB-2-SMA | ||
950 | _aMathematics and Statistics (Springer-11649) | ||
999 |
_c510130 _d510130 |