000 02923nam a22004815i 4500
001 978-0-387-28929-8
003 DE-He213
005 20161121231121.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 _a9780387289298
_9978-0-387-28929-8
024 7 _a10.1007/978-0-387-28929-8
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aProcesi, Claudio.
_eauthor.
245 1 0 _aLie Groups
_h[electronic resource] :
_bAn Approach through Invariants and Representations /
_cby Claudio Procesi.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _aXXIV, 600 p. 18 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext
505 0 _aGeneral Methods and Ideas -- Symmetric Functions -- Theory of Algebraic Forms -- Lie Algebras and lie Groups -- Tensor Algebra -- Semisimple Algebras -- Algebraic Groups -- Group Representations -- Tensor Symmetry -- Semisimple Lie Groups and Algebras -- Invariants -- Tableaux -- Standard Monomials -- Hilbert Theory -- Binary Forms.
520 _aLie groups has been an increasing area of focus and rich research since the middle of the 20th century. Procesi's masterful approach to Lie groups through invariants and representations gives the reader a comprehensive treatment of the classical groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. Key to this unique exposition is the large amount of background material presented so the book is accessible to a reader with relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. Lie Groups: An Approach through Invariants and Representations will engage a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aGroup theory.
650 0 _aFunctional analysis.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
650 2 4 _aGroup Theory and Generalizations.
650 2 4 _aFunctional Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387260402
830 0 _aUniversitext
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-28929-8
912 _aZDB-2-SMA
950 _aMathematics and Statistics (Springer-11649)
999 _c508848
_d508848