000 04585nam a22005295i 4500
001 978-3-540-36119-0
003 DE-He213
005 20161121231120.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540361190
_9978-3-540-36119-0
024 7 _a10.1007/978-3-540-36119-0
_2doi
050 4 _aTJ210.2-211.495
050 4 _aTJ163.12
072 7 _aTJFM
_2bicssc
072 7 _aTJFD
_2bicssc
072 7 _aTEC004000
_2bisacsh
072 7 _aTEC037000
_2bisacsh
082 0 4 _a629.8
_223
245 1 0 _aFast Motions in Biomechanics and Robotics
_h[electronic resource] :
_bOptimization and Feedback Control /
_cedited by Moritz Diehl, Katja Mombaur.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aXIV, 446 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Control and Information Sciences,
_x0170-8643 ;
_v340
505 0 _aRe-injecting the Structure in NMPC Schemes Application to the Constrained Stabilization of a Snakeboard -- Recent Advances on the Algorithmic Optimization of Robot Motion -- A Spring Assisted One Degree of Freedom Climbing Model -- Fast Direct Multiple Shooting Algorithms for Optimal Robot Control -- Stability Analysis of Bipedal Walking with Control or Monitoring of the Center of Pressure -- Multi-Locomotion Control of Biped Locomotion and Brachiation Robot -- On the Determination of the Basin of Attraction for Stationary and Periodic Movements -- Task-Level Control of the Lateral Leg Spring Model of Cockroach Locomotion -- Investigating the Use of Iterative Learning Control and Repetitive Control to Implement Periodic Gaits -- Actuation System and Control Concept for a Running Biped -- Dynamical Synthesis of a Walking Cyclic Gait for a Biped with Point Feet -- Performing Open-Loop Stable Flip-Flops — An Example for Stability Optimization and Robustness Analysis of Fast Periodic Motions -- Achieving Bipedal Running with RABBIT: Six Steps Toward Infinity -- Velocity-Based Stability Margins for Fast Bipedal Walking -- Nonlinear Model Predictive Control and Sum of Squares Techniques -- Comparison of Two Measures of Dynamic Stability During Treadmill Walking -- Simple Feedback Control of Cockroach Running -- Running and Walking with Compliant Legs -- Self-stability in Biological Systems — Studies based on Biomechanical Models -- Holonomy and Nonholonomy in the Dynamics of Articulated Motion -- Dynamic Stability of a Simple Biped Walking System with Swing Leg Retraction.
520 _aIn the past decades, much progress has been made in the ?eld of walking robots. The current state of technology makes it possible to create humanoid robots that nearly walk like a human being, climb stairs, or avoid small - stacles. However, the dream of a robot running as fast and as elegantly as a human is still far from becoming reality. Control of such fast motions is still a big technological issue in robotics, and the maximum running speed of contemporary robots is still much smaller than that of human track runners. The conventional control approach that most of these robots are based on does not seem to be suitable to increase the running speeds up to a biological level. In order to address this challenge, we invited an interdisciplinary com- nity of researchers from robotics, biomechanics, control engineering and - pliedmathematicstocometogetherinHeidelbergatthe?rstRuperto-Carola- Symposium “Fast Motions in Biomechanics and Robotics – Optimization & Feedback Control” which was held at the International Science Forum (IWH) on September 7–9, 2005. The number of participants in this symposium was kept small in order to promote discussions and enable a fruitful exchange of ideas.
650 0 _aEngineering.
650 0 _aSystem theory.
650 0 _aControl engineering.
650 0 _aRobotics.
650 0 _aMechatronics.
650 1 4 _aEngineering.
650 2 4 _aControl, Robotics, Mechatronics.
650 2 4 _aSystems Theory, Control.
700 1 _aDiehl, Moritz.
_eeditor.
700 1 _aMombaur, Katja.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540361183
830 0 _aLecture Notes in Control and Information Sciences,
_x0170-8643 ;
_v340
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-36119-0
912 _aZDB-2-ENG
950 _aEngineering (Springer-11647)
999 _c508824
_d508824