000 02825nam a22004575i 4500
001 978-3-540-29021-6
003 DE-He213
005 20161121231031.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540290216
_9978-3-540-29021-6
024 7 _a10.1007/3-540-29021-4
_2doi
050 4 _aQA319-329.9
072 7 _aPBKF
_2bicssc
072 7 _aMAT037000
_2bisacsh
082 0 4 _a515.7
_223
100 1 _aPrato, Giuseppe Da.
_eauthor.
245 1 3 _aAn Introduction to Infinite-Dimensional Analysis
_h[electronic resource] /
_cby Giuseppe Da Prato.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aX, 208 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aGaussian measures in Hilbert spaces -- The Cameron–Martin formula -- Brownian motion -- Stochastic perturbations of a dynamical system -- Invariant measures for Markov semigroups -- Weak convergence of measures -- Existence and uniqueness of invariant measures -- Examples of Markov semigroups -- L2 spaces with respect to a Gaussian measure -- Sobolev spaces for a Gaussian measure -- Gradient systems.
520 _aIn this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction – for an audience knowing basic functional analysis and measure theory but not necessarily probability theory – to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aPartial differential equations.
650 0 _aProbabilities.
650 1 4 _aMathematics.
650 2 4 _aFunctional Analysis.
650 2 4 _aProbability Theory and Stochastic Processes.
650 2 4 _aPartial Differential Equations.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540290209
856 4 0 _uhttp://dx.doi.org/10.1007/3-540-29021-4
912 _aZDB-2-SMA
950 _aMathematics and Statistics (Springer-11649)
999 _c507578
_d507578