000 | 02825nam a22004575i 4500 | ||
---|---|---|---|
001 | 978-3-540-29021-6 | ||
003 | DE-He213 | ||
005 | 20161121231031.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2006 gw | s |||| 0|eng d | ||
020 |
_a9783540290216 _9978-3-540-29021-6 |
||
024 | 7 |
_a10.1007/3-540-29021-4 _2doi |
|
050 | 4 | _aQA319-329.9 | |
072 | 7 |
_aPBKF _2bicssc |
|
072 | 7 |
_aMAT037000 _2bisacsh |
|
082 | 0 | 4 |
_a515.7 _223 |
100 | 1 |
_aPrato, Giuseppe Da. _eauthor. |
|
245 | 1 | 3 |
_aAn Introduction to Infinite-Dimensional Analysis _h[electronic resource] / _cby Giuseppe Da Prato. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2006. |
|
300 |
_aX, 208 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aGaussian measures in Hilbert spaces -- The Cameron–Martin formula -- Brownian motion -- Stochastic perturbations of a dynamical system -- Invariant measures for Markov semigroups -- Weak convergence of measures -- Existence and uniqueness of invariant measures -- Examples of Markov semigroups -- L2 spaces with respect to a Gaussian measure -- Sobolev spaces for a Gaussian measure -- Gradient systems. | |
520 | _aIn this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction – for an audience knowing basic functional analysis and measure theory but not necessarily probability theory – to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aFunctional analysis. | |
650 | 0 | _aPartial differential equations. | |
650 | 0 | _aProbabilities. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aFunctional Analysis. |
650 | 2 | 4 | _aProbability Theory and Stochastic Processes. |
650 | 2 | 4 | _aPartial Differential Equations. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783540290209 |
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/3-540-29021-4 |
912 | _aZDB-2-SMA | ||
950 | _aMathematics and Statistics (Springer-11649) | ||
999 |
_c507578 _d507578 |