000 | 03411nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-0-387-23469-4 | ||
003 | DE-He213 | ||
005 | 20161121230647.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2005 xxu| s |||| 0|eng d | ||
020 |
_a9780387234694 _9978-0-387-23469-4 |
||
024 | 7 |
_a10.1007/b101575 _2doi |
|
050 | 4 | _aRC321-580 | |
072 | 7 |
_aPSAN _2bicssc |
|
072 | 7 |
_aMED057000 _2bisacsh |
|
082 | 0 | 4 |
_a612.8 _223 |
100 | 1 |
_aRasche, Christoph. _eauthor. |
|
245 | 1 | 4 |
_aThe Making of a Neuromorphic Visual System _h[electronic resource] / _cby Christoph Rasche. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2005. |
|
300 |
_aXI, 140 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aSeeing: Blazing Processing Characteristics -- Category Representation and Recognition Evolvement -- Neuroscientific Inspiration -- Neuromorphic Tools -- Insight From Line Drawings Studies -- Retina Circuits Signaling and Propagating Contours -- The Symmetric-Axis Transform -- Motion Detection -- Neuromorphic Architectures: Pieces and Proposals -- Shape Recognition with Contour Propagation Fields -- Scene Recognition -- Summary. | |
520 | _aThe reader is presented an approach to the construction of a visual system, which is behaviorally, computationally and neurally motivated. The central goal is to characterize the process of visual categorization and to find a suitable representation format that can successfully deal with the structural variability existent within visual categories. It does not define such representations a priori but attempts to show directions on how to gradually work towards them. The book reviews past and existent theories of visual object and shape recognition in the fields of computer vision, neuroscience and psychology. The entire range of computations is discussed, as for example contour extraction in retinal circuits, orientation determination in cortical networks, position and scale independence of shape, as well as the issue of object and shape representation in a neural substrate. Region-based approaches are discussed and are modeled with wave-propagating networks. It is demonstrated how those networks operate on gray-scale images. A completely novel shape recognition architecture is proposed that can recognize simple shapes under various degraded conditions. It is discussed how such networks can be used for constructing basic-level object representations. It is envisioned how those networks can be implemented using the method of neuromorphic engineering, an analog electronic hardware substrate than can run neural computations in real-time and with little power. | ||
650 | 0 | _aMedicine. | |
650 | 0 | _aNeurosciences. | |
650 | 0 | _aNeurobiology. | |
650 | 0 | _aMicrowaves. | |
650 | 0 | _aOptical engineering. | |
650 | 0 | _aBiomedical engineering. | |
650 | 1 | 4 | _aBiomedicine. |
650 | 2 | 4 | _aNeurosciences. |
650 | 2 | 4 | _aBiomedical Engineering. |
650 | 2 | 4 | _aNeurobiology. |
650 | 2 | 4 | _aMicrowaves, RF and Optical Engineering. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9780387234687 |
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/b101575 |
912 | _aZDB-2-SBL | ||
950 | _aBiomedical and Life Sciences (Springer-11642) | ||
999 |
_c502074 _d502074 |