Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Concrete structures deteriorated by delayed ettringite formation and alkali-silica reactions

Contributor(s): Azevedo, Antonio C | Silva, Fernando A. N | Delgado, Joao M. P. Q | Lira, Isaque.
Series: Building pathology and rehabilitation. ; v.24 / edited by Vasco Peixoto de Freitas, Anibal Costa and Joao M. P. Q. Delgado.Publisher: Switzerland Springer 2023Description: viii, 88p.ISBN: 9783031122668.Subject(s): Concrete deterioration mathematical models | Concrete construction deterioration mathematical models | EttringiteDDC classification: C749 | 624.1834 Summary: This book discusses the behaviour of isolated concrete bottle-shaped struts affected by internal expansion reactions (ISR). For that purpose, the numerical modelling of damaged concrete was performed using the Concrete Damaged Plasticity Model (CDPM) implemented in ABAQUS and validated the model through Sankovich's tests. A procedure to automatically obtain the concrete plasticity and damage parameters, essential for CDPM, was developed in Matlab. The inputs were the characteristic compressive strength of the concrete, the equivalent length of the finite element mesh and the ratio between the plastic and inelastic compressive strains. The results showed that the CDPM could represent the load-bearing mechanisms of isolated concrete bottle-shaped struts for a range of several stress levels to which these elements may be subjected in the panels investigated. The numerical simulations for different expansion levels consistently captured the expected damage profile of the panels and theload corresponding to the formation of the first crack, the estimated crack opening, and the ultimate load. For the panels investigated, the reduction observed in the failure load reached values close to 70%, the increase of the tensile plastic deformation was more than 60%, and the maximum crack opening can reach an increase of 113% when compared with those observed experimentally in panels without internal swelling reactions The book also offers a systematic review of the current state of knowledge and it is a valuable resource for scientists, students, practitioners, and lecturers in various scientific and engineering disciplines, namely, civil and materials engineering, as well as and other interested parties.
List(s) this item appears in: New arrivals November 18 to 24, 2024
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur
General Stacks 624.1834 C749 (Browse shelf) Available A186621
Total holds: 0

This book discusses the behaviour of isolated concrete bottle-shaped struts affected by internal expansion reactions (ISR). For that purpose, the numerical modelling of damaged concrete was performed using the Concrete Damaged Plasticity Model (CDPM) implemented in ABAQUS and validated the model through Sankovich's tests. A procedure to automatically obtain the concrete plasticity and damage parameters, essential for CDPM, was developed in Matlab. The inputs were the characteristic compressive strength of the concrete, the equivalent length of the finite element mesh and the ratio between the plastic and inelastic compressive strains. The results showed that the CDPM could represent the load-bearing mechanisms of isolated concrete bottle-shaped struts for a range of several stress levels to which these elements may be subjected in the panels investigated. The numerical simulations for different expansion levels consistently captured the expected damage profile of the panels and theload corresponding to the formation of the first crack, the estimated crack opening, and the ultimate load. For the panels investigated, the reduction observed in the failure load reached values close to 70%, the increase of the tensile plastic deformation was more than 60%, and the maximum crack opening can reach an increase of 113% when compared with those observed experimentally in panels without internal swelling reactions The book also offers a systematic review of the current state of knowledge and it is a valuable resource for scientists, students, practitioners, and lecturers in various scientific and engineering disciplines, namely, civil and materials engineering, as well as and other interested parties.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha