Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Oscillatory models in general relativity

By: Russell, Esra.
Contributor(s): Pashaev, Oktay K.
Series: Studies in mathematical physics; v.41 ; edited by Michael Efroimsky. Publisher: Berlin Walter De Gruyter 2018Description: xii,140p.ISBN: 9783110514957.Subject(s): Cosmic physics | OscillationsDDC classification: 530.11 | R911o Summary: The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists. Contents Part I: Dissipative geometry and general relativity theory Pseudo-Riemannian geometry and general relativity Dynamics of universe models Anisotropic and homogeneous universe models Metric waves in a nonstationary universe and dissipative oscillator Bosonic and fermionic models of a Friedman–Robertson–Walker universe Time dependent constants in an oscillatory universe Part II: Variational principle for time dependent oscillations and dissipations Lagrangian and Hamilton descriptions Damped oscillator: classical and quantum theory Sturm–Liouville problem as a damped oscillator with time dependent damping and frequency Riccati representation of time dependent damped oscillators Quantization of the harmonic oscillator with time dependent parameters
List(s) this item appears in: New Arrival May 28 to June 10, 2018
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur
General Stacks 530.11 R911o (Browse shelf) Available A183568
Total holds: 0

The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists.

Contents
Part I: Dissipative geometry and general relativity theory
Pseudo-Riemannian geometry and general relativity
Dynamics of universe models
Anisotropic and homogeneous universe models
Metric waves in a nonstationary universe and dissipative oscillator
Bosonic and fermionic models of a Friedman–Robertson–Walker universe
Time dependent constants in an oscillatory universe

Part II: Variational principle for time dependent oscillations and dissipations
Lagrangian and Hamilton descriptions
Damped oscillator: classical and quantum theory
Sturm–Liouville problem as a damped oscillator with time dependent damping and frequency
Riccati representation of time dependent damped oscillators
Quantization of the harmonic oscillator with time dependent parameters

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha