Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Wide-Gap Chalcopyrites

Contributor(s): Siebentritt, Susanne [editor.] | Rau, Uwe [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Series in Materials Science: 86Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.Description: XIV, 260 p. 122 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783540312932.Subject(s): Physics | Physical chemistry | Condensed matter | Engineering | Optical materials | Electronic materials | Physics | Condensed Matter Physics | Optical and Electronic Materials | Engineering, general | Physical ChemistryDDC classification: 530.41 Online resources: Click here to access online
Contents:
Cu-Chalcopyrites–Unique Materials for Thin-Film Solar Cells -- Band-Structure Lineup at I–III–VI2 Schottky Contacts and Heterostructures -- Defects and Self-Compensation in Semiconductors -- Confine Cu to Increase Cu-Chalcopyrite Solar Cell Voltage -- Photocapacitance Spectroscopy in Copper Indium Diselenide Alloys -- Recombination Mechanisms in Cu(In,Ga)(Se,S)2 Solar Cells -- Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2 -- Spatial Inhomogeneities of Cu(InGa)Se2 in the Mesoscopic Scale -- Electro-Optical Properties of the Microstructure in Chalcopyrite Thin Films -- Electronic Properties of Surfaces and Interfaces in Widegap Chalcopyrites -- Interfaces of Cu-Chalcopyrites -- Bandgap Variations for Large Area Cu(In,Ga)Se2 Module Production.
In: Springer eBooksSummary: Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK6852
Total holds: 0

Cu-Chalcopyrites–Unique Materials for Thin-Film Solar Cells -- Band-Structure Lineup at I–III–VI2 Schottky Contacts and Heterostructures -- Defects and Self-Compensation in Semiconductors -- Confine Cu to Increase Cu-Chalcopyrite Solar Cell Voltage -- Photocapacitance Spectroscopy in Copper Indium Diselenide Alloys -- Recombination Mechanisms in Cu(In,Ga)(Se,S)2 Solar Cells -- Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2 -- Spatial Inhomogeneities of Cu(InGa)Se2 in the Mesoscopic Scale -- Electro-Optical Properties of the Microstructure in Chalcopyrite Thin Films -- Electronic Properties of Surfaces and Interfaces in Widegap Chalcopyrites -- Interfaces of Cu-Chalcopyrites -- Bandgap Variations for Large Area Cu(In,Ga)Se2 Module Production.

Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha