Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Communication networks : : a concise introduction /

By: Walrand, Jean [author.].
Contributor(s): Parekh, Shyam P [author.].
Material type: materialTypeLabelBookSeries: Synthesis digital library of engineering and computer science: ; Synthesis lectures on communication networks: # 20.Publisher: [San Rafael, California] : Morgan & Claypool, 2018.Edition: Second edition.Description: 1 PDF (xx, 220 pages) : illustrations.Content type: text Media type: electronic Carrier type: online resourceISBN: 9781627058995.Subject(s): Computer networks | Wireless communication systems | Internet | Ethernet | WiFi | Routing | Bellman-Ford algorithm | Dijkstra algorithm | TCP | Congestion Control | Flow Control | QoS | LTE | Peer-to-Peer Networks | SDN | NFV | IoTGenre/Form: Electronic books.DDC classification: 004.6 Online resources: Abstract with links to resource Also available in print.
Contents:
1. The Internet -- 1.1 Basic operations -- 1.1.1 Hosts, routers, links -- 1.1.2 Packet switching -- 1.1.3 Addressing -- 1.1.4 Routing -- 1.1.5 Error detection -- 1.1.6 Retransmission of erroneous packets -- 1.1.7 Congestion control -- 1.1.8 Flow control -- 1.2 DNS, HTTP, and WWW -- 1.2.1 DNS -- 1.2.2 HTTP and WWW -- 1.3 Summary -- 1.4 Problems -- 1.5 References --
2. Principles -- 2.1 Sharing -- 2.2 Metrics -- 2.2.1 Link rate -- 2.2.2 Link bandwidth and capacity -- 2.2.3 Delay -- 2.2.4 Throughput -- 2.2.5 Delay jitter -- 2.2.6 M/M/1 queue -- 2.2.7 Little's result -- 2.2.8 Fairness -- 2.3 Scalability -- 2.3.1 Location-based addressing -- 2.3.2 Two-level routing -- 2.3.3 Best effort service -- 2.3.4 End-to-end principle and stateless routers -- 2.3.5 Hierarchical naming -- 2.4 Application and technology independence -- 2.4.1 Layers -- 2.5 Application topology -- 2.5.1 Client/server -- 2.5.2 P2P -- 2.5.3 Cloud computing -- 2.5.4 Content distribution -- 2.5.5 Multicast/anycast -- 2.5.6 Push/pull -- 2.5.7 Discovery -- 2.6 Summary -- 2.7 Problems -- 2.8 References --
3. Ethernet -- 3.1 Typical installation -- 3.2 History of Ethernet -- 3.2.1 Aloha network -- 3.2.2 Cable Ethernet -- 3.2.3 Hub Ethernet -- 3.2.4 Switched Ethernet -- 3.3 Addresses -- 3.4 Frame -- 3.5 Physical layer -- 3.6 Switched Ethernet -- 3.6.1 Example -- 3.6.2 Learning -- 3.6.3 Spanning tree protocol -- 3.7 Aloha -- 3.7.1 Time-slotted version -- 3.8 Non-slotted Aloha -- 3.9 Hub Ethernet -- 3.9.1 Maximum collision detection time -- 3.10 Appendix: probability -- 3.10.1 Probability -- 3.10.2 Additivity for exclusive events -- 3.10.3 Independent events -- 3.10.4 Slotted Aloha -- 3.10.5 Non-slotted Aloha -- 3.10.6 Waiting for success -- 3.10.7 Hub Ethernet -- 3.11 Summary -- 3.12 Problems -- 3.13 References --
4. WiFi -- 4.1 Basic operations -- 4.2 Medium access control (MAC) -- 4.2.1 MAC protocol -- 4.2.2 Enhancements for medium access -- 4.2.3 MAC addresses -- 4.3 Physical layer -- 4.4 Efficiency analysis of MAC protocol -- 4.4.1 Single device -- 4.4.2 Multiple devices -- 4.5 Recent advances -- 4.5.1 IEEE 802.11n--introduction of MIMO in WiFi -- 4.5.2 IEEE 802.11ad--WiFi in millimeter wave spectrum -- 4.5.3 IEEE 802.11ac--introduction of MU-MIMO in WiFi -- 4.5.4 IEEE 802.11ah--WiFi for IoT and M2M -- 4.5.5 Peer-to-peer WiFi -- 4.6 Appendix: Markov chains -- 4.7 Summary -- 4.8 Problems -- 4.9 References --
5. Routing -- 5.1 Domains and two-level routing -- 5.1.1 Scalability -- 5.1.2 Transit and peering -- 5.2 Inter-domain routing -- 5.2.1 Path vector algorithm -- 5.2.2 Possible oscillations -- 5.2.3 Multi-exit discriminators -- 5.3 Intra-domain shortest path routing -- 5.3.1 Dijkstra's algorithm and link state -- 5.3.2 Bellman-Ford and distance vector -- 5.4 Anycast, multicast -- 5.4.1 Anycast -- 5.4.2 Multicast -- 5.4.3 Forward error correction -- 5.4.4 Network coding -- 5.5 Ad hoc networks -- 5.5.1 AODV -- 5.5.2 OLSR -- 5.5.3 Ant routing -- 5.5.4 Geographic routing -- 5.5.5 Backpressure routing -- 5.6 Summary -- 5.7 Problems -- 5.8 References --
6. Internetworking -- 6.1 Objective -- 6.2 Basic components: Mask, Gateway, ARP -- 6.2.1 Addresses and subnets -- 6.2.2 Gateway -- 6.2.3 DNS server -- 6.2.4 ARP -- 6.2.5 Configuration -- 6.3 Examples -- 6.3.1 Same subnet -- 6.3.2 Different subnets -- 6.3.3 Finding IP addresses -- 6.3.4 Fragmentation -- 6.4 DHCP -- 6.5 NAT -- 6.6 Summary -- 6.7 Problems -- 6.8 References --
7. Transport -- 7.1 Transport services -- 7.2 Transport header -- 7.3 TCP states -- 7.4 Error control -- 7.4.1 Stop-and-wait -- 7.4.2 Go Back N -- 7.4.3 Selective acknowledgments -- 7.4.4 Timers -- 7.5 Congestion control -- 7.5.1 AIMD -- 7.5.2 Refinements: fast retransmit and fast recovery -- 7.5.3 Adjusting the rate -- 7.5.4 TCP window size -- 7.5.5 Terminology -- 7.6 Flow control -- 7.7 Alternative congestion control schemes -- 7.8 Summary -- 7.9 Problems -- 7.10 References --
8. Models -- 8.1 Graphs -- 8.1.1 Max-flow, min-cut -- 8.1.2 Coloring and MAC protocols -- 8.2 Queues -- 8.2.1 M/M/1 queue -- 8.2.2 Jackson networks -- 8.2.3 Queuing vs. communication networks -- 8.3 The role of layers -- 8.4 Congestion control -- 8.4.1 Fairness vs. throughput -- 8.4.2 Distributed congestion control -- 8.4.3 TCP revisited -- 8.5 Dynamic routing and congestion control -- 8.6 Wireless -- 8.7 Appendix: Justification for primal-dual theorem -- 8.8 Summary -- 8.9 Problems -- 8.10 References --
9. LTE -- 9.1 Cellular network -- 9.2 Technology evolution -- 9.3 Key aspects of LTE -- 9.3.1 LTE system architecture -- 9.3.2 Physical layer -- 9.3.3 QoS support -- 9.3.4 Scheduler -- 9.4 LTE-advanced -- 9.4.1 Carrier aggregation -- 9.4.2 Enhanced MIMO support -- 9.4.3 Relay nodes (RNs) -- 9.4.4 Coordinated multi point operation (CoMP) -- 9.5 5G -- 9.6 Summary -- 9.7 Problems -- 9.8 References --
10. QOS -- 10.1 Overview -- 10.2 Traffic shaping -- 10.2.1 Leaky buckets -- 10.2.2 Delay bounds -- 10.3 Scheduling -- 10.3.1 GPS -- 10.3.2 WFQ -- 10.4 Regulated flows and WFQ -- 10.5 End-to-end QoS -- 10.6 End-to-end admission control -- 10.7 Net neutrality -- 10.8 Summary -- 10.9 Problems -- 10.10 References --
11. Physical layer -- 11.1 How to transport bits? -- 11.2 Link characteristics -- 11.3 Wired and wireless links -- 11.3.1 Modulation schemes: BPSK, QPSK, QAM -- 11.3.2 Inter-cell interference and OFDM -- 11.4 Optical links -- 11.4.1 Operation of fiber -- 11.4.2 OOK modulation -- 11.4.3 Wavelength division multiplexing -- 11.4.4 Optical switching -- 11.4.5 Passive optical network -- 11.5 Summary -- 11.6 References --
12. Additional topics -- 12.1 Switches -- 12.1.1 Modular switches -- 12.1.2 Switched crossbars -- 12.2 Overlay networks -- 12.2.1 Applications: CDN and P2P -- 12.2.2 Routing in overlay networks -- 12.3 How popular P2P protocols work -- 12.3.1 1st generation: server-client based -- 12.3.2 2nd generation: centralized directory based -- 12.3.3 3rd generation: purely distributed -- 12.3.4 Advent of hierarchical overlay--super nodes -- 12.3.5 Advanced distributed file sharing: BitTorrent -- 12.4 Sensor networks -- 12.4.1 Design issues -- 12.5 Distributed applications -- 12.5.1 Bellman-Ford routing algorithm -- 12.5.2 Power adjustment -- 12.6 Byzantine agreement -- 12.6.1 Agreeing over an unreliable channel -- 12.6.2 Consensus in the presence of adversaries -- 12.7 Source compression -- 12.8 SDN and NFV -- 12.8.1 SDN architecture -- 12.8.2 New services enabled by SDN -- 12.8.3 Knowledge-defined networking -- 12.8.4 Management framework for NFV -- 12.9 Internet of things (IoT) -- 12.9.1 Remote computing and storage paradigms -- 12.10 Summary -- 12.11 Problems -- 12.12 References --
Bibliography -- Authors' biographies -- Index.
Abstract: This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is also included. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBKE852
Total holds: 0

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Part of: Synthesis digital library of engineering and computer science.

Includes bibliographical references (pages 207-214) and index.

1. The Internet -- 1.1 Basic operations -- 1.1.1 Hosts, routers, links -- 1.1.2 Packet switching -- 1.1.3 Addressing -- 1.1.4 Routing -- 1.1.5 Error detection -- 1.1.6 Retransmission of erroneous packets -- 1.1.7 Congestion control -- 1.1.8 Flow control -- 1.2 DNS, HTTP, and WWW -- 1.2.1 DNS -- 1.2.2 HTTP and WWW -- 1.3 Summary -- 1.4 Problems -- 1.5 References --

2. Principles -- 2.1 Sharing -- 2.2 Metrics -- 2.2.1 Link rate -- 2.2.2 Link bandwidth and capacity -- 2.2.3 Delay -- 2.2.4 Throughput -- 2.2.5 Delay jitter -- 2.2.6 M/M/1 queue -- 2.2.7 Little's result -- 2.2.8 Fairness -- 2.3 Scalability -- 2.3.1 Location-based addressing -- 2.3.2 Two-level routing -- 2.3.3 Best effort service -- 2.3.4 End-to-end principle and stateless routers -- 2.3.5 Hierarchical naming -- 2.4 Application and technology independence -- 2.4.1 Layers -- 2.5 Application topology -- 2.5.1 Client/server -- 2.5.2 P2P -- 2.5.3 Cloud computing -- 2.5.4 Content distribution -- 2.5.5 Multicast/anycast -- 2.5.6 Push/pull -- 2.5.7 Discovery -- 2.6 Summary -- 2.7 Problems -- 2.8 References --

3. Ethernet -- 3.1 Typical installation -- 3.2 History of Ethernet -- 3.2.1 Aloha network -- 3.2.2 Cable Ethernet -- 3.2.3 Hub Ethernet -- 3.2.4 Switched Ethernet -- 3.3 Addresses -- 3.4 Frame -- 3.5 Physical layer -- 3.6 Switched Ethernet -- 3.6.1 Example -- 3.6.2 Learning -- 3.6.3 Spanning tree protocol -- 3.7 Aloha -- 3.7.1 Time-slotted version -- 3.8 Non-slotted Aloha -- 3.9 Hub Ethernet -- 3.9.1 Maximum collision detection time -- 3.10 Appendix: probability -- 3.10.1 Probability -- 3.10.2 Additivity for exclusive events -- 3.10.3 Independent events -- 3.10.4 Slotted Aloha -- 3.10.5 Non-slotted Aloha -- 3.10.6 Waiting for success -- 3.10.7 Hub Ethernet -- 3.11 Summary -- 3.12 Problems -- 3.13 References --

4. WiFi -- 4.1 Basic operations -- 4.2 Medium access control (MAC) -- 4.2.1 MAC protocol -- 4.2.2 Enhancements for medium access -- 4.2.3 MAC addresses -- 4.3 Physical layer -- 4.4 Efficiency analysis of MAC protocol -- 4.4.1 Single device -- 4.4.2 Multiple devices -- 4.5 Recent advances -- 4.5.1 IEEE 802.11n--introduction of MIMO in WiFi -- 4.5.2 IEEE 802.11ad--WiFi in millimeter wave spectrum -- 4.5.3 IEEE 802.11ac--introduction of MU-MIMO in WiFi -- 4.5.4 IEEE 802.11ah--WiFi for IoT and M2M -- 4.5.5 Peer-to-peer WiFi -- 4.6 Appendix: Markov chains -- 4.7 Summary -- 4.8 Problems -- 4.9 References --

5. Routing -- 5.1 Domains and two-level routing -- 5.1.1 Scalability -- 5.1.2 Transit and peering -- 5.2 Inter-domain routing -- 5.2.1 Path vector algorithm -- 5.2.2 Possible oscillations -- 5.2.3 Multi-exit discriminators -- 5.3 Intra-domain shortest path routing -- 5.3.1 Dijkstra's algorithm and link state -- 5.3.2 Bellman-Ford and distance vector -- 5.4 Anycast, multicast -- 5.4.1 Anycast -- 5.4.2 Multicast -- 5.4.3 Forward error correction -- 5.4.4 Network coding -- 5.5 Ad hoc networks -- 5.5.1 AODV -- 5.5.2 OLSR -- 5.5.3 Ant routing -- 5.5.4 Geographic routing -- 5.5.5 Backpressure routing -- 5.6 Summary -- 5.7 Problems -- 5.8 References --

6. Internetworking -- 6.1 Objective -- 6.2 Basic components: Mask, Gateway, ARP -- 6.2.1 Addresses and subnets -- 6.2.2 Gateway -- 6.2.3 DNS server -- 6.2.4 ARP -- 6.2.5 Configuration -- 6.3 Examples -- 6.3.1 Same subnet -- 6.3.2 Different subnets -- 6.3.3 Finding IP addresses -- 6.3.4 Fragmentation -- 6.4 DHCP -- 6.5 NAT -- 6.6 Summary -- 6.7 Problems -- 6.8 References --

7. Transport -- 7.1 Transport services -- 7.2 Transport header -- 7.3 TCP states -- 7.4 Error control -- 7.4.1 Stop-and-wait -- 7.4.2 Go Back N -- 7.4.3 Selective acknowledgments -- 7.4.4 Timers -- 7.5 Congestion control -- 7.5.1 AIMD -- 7.5.2 Refinements: fast retransmit and fast recovery -- 7.5.3 Adjusting the rate -- 7.5.4 TCP window size -- 7.5.5 Terminology -- 7.6 Flow control -- 7.7 Alternative congestion control schemes -- 7.8 Summary -- 7.9 Problems -- 7.10 References --

8. Models -- 8.1 Graphs -- 8.1.1 Max-flow, min-cut -- 8.1.2 Coloring and MAC protocols -- 8.2 Queues -- 8.2.1 M/M/1 queue -- 8.2.2 Jackson networks -- 8.2.3 Queuing vs. communication networks -- 8.3 The role of layers -- 8.4 Congestion control -- 8.4.1 Fairness vs. throughput -- 8.4.2 Distributed congestion control -- 8.4.3 TCP revisited -- 8.5 Dynamic routing and congestion control -- 8.6 Wireless -- 8.7 Appendix: Justification for primal-dual theorem -- 8.8 Summary -- 8.9 Problems -- 8.10 References --

9. LTE -- 9.1 Cellular network -- 9.2 Technology evolution -- 9.3 Key aspects of LTE -- 9.3.1 LTE system architecture -- 9.3.2 Physical layer -- 9.3.3 QoS support -- 9.3.4 Scheduler -- 9.4 LTE-advanced -- 9.4.1 Carrier aggregation -- 9.4.2 Enhanced MIMO support -- 9.4.3 Relay nodes (RNs) -- 9.4.4 Coordinated multi point operation (CoMP) -- 9.5 5G -- 9.6 Summary -- 9.7 Problems -- 9.8 References --

10. QOS -- 10.1 Overview -- 10.2 Traffic shaping -- 10.2.1 Leaky buckets -- 10.2.2 Delay bounds -- 10.3 Scheduling -- 10.3.1 GPS -- 10.3.2 WFQ -- 10.4 Regulated flows and WFQ -- 10.5 End-to-end QoS -- 10.6 End-to-end admission control -- 10.7 Net neutrality -- 10.8 Summary -- 10.9 Problems -- 10.10 References --

11. Physical layer -- 11.1 How to transport bits? -- 11.2 Link characteristics -- 11.3 Wired and wireless links -- 11.3.1 Modulation schemes: BPSK, QPSK, QAM -- 11.3.2 Inter-cell interference and OFDM -- 11.4 Optical links -- 11.4.1 Operation of fiber -- 11.4.2 OOK modulation -- 11.4.3 Wavelength division multiplexing -- 11.4.4 Optical switching -- 11.4.5 Passive optical network -- 11.5 Summary -- 11.6 References --

12. Additional topics -- 12.1 Switches -- 12.1.1 Modular switches -- 12.1.2 Switched crossbars -- 12.2 Overlay networks -- 12.2.1 Applications: CDN and P2P -- 12.2.2 Routing in overlay networks -- 12.3 How popular P2P protocols work -- 12.3.1 1st generation: server-client based -- 12.3.2 2nd generation: centralized directory based -- 12.3.3 3rd generation: purely distributed -- 12.3.4 Advent of hierarchical overlay--super nodes -- 12.3.5 Advanced distributed file sharing: BitTorrent -- 12.4 Sensor networks -- 12.4.1 Design issues -- 12.5 Distributed applications -- 12.5.1 Bellman-Ford routing algorithm -- 12.5.2 Power adjustment -- 12.6 Byzantine agreement -- 12.6.1 Agreeing over an unreliable channel -- 12.6.2 Consensus in the presence of adversaries -- 12.7 Source compression -- 12.8 SDN and NFV -- 12.8.1 SDN architecture -- 12.8.2 New services enabled by SDN -- 12.8.3 Knowledge-defined networking -- 12.8.4 Management framework for NFV -- 12.9 Internet of things (IoT) -- 12.9.1 Remote computing and storage paradigms -- 12.10 Summary -- 12.11 Problems -- 12.12 References --

Bibliography -- Authors' biographies -- Index.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is also included. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things.

Also available in print.

Title from PDF title page (viewed on December 12, 2017).

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha