Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Non-volatile in-memory computing by spintronics /

By: Yu, Hao (Electrical engineer) [author.].
Contributor(s): Ni, Leibin [author.] | Wang, Yuhao [author.].
Material type: materialTypeLabelBookSeries: Synthesis digital library of engineering and computer science: ; Synthesis lectures on emerging engineering technologies: # 8.Publisher: [San Rafael, California] : Morgan & Claypool, 2017.Description: 1 PDF (xiii, 147 pages) : illustrations.Content type: text Media type: electronic Carrier type: online resourceISBN: 9781627056441.Subject(s): Spintronics | Nonvolatile random-access memory | Spintronics | in-memory computing | non-volatile memory | logic-memory integration | data encryption | AES | machine learning | data analytics | hardware acceleratorDDC classification: 621.3 Online resources: Abstract with links to resource Also available in print.
Contents:
1. Introduction -- 1.1 Memory wall -- 1.2 Traditional semiconductor memory -- 1.2.1 Overview -- 1.2.2 Nano-scale limitations -- 1.3 Non-volatile spintronic memory -- 1.3.1 Basic magnetization process -- 1.3.2 Magnetization damping -- 1.3.3 Spin-transfer torque -- 1.3.4 Magnetization dynamics -- 1.3.5 Domain wall propagation -- 1.4 Traditional memory architecture -- 1.5 Non-volatile in-memory computing architecture -- 1.6 References --
2. Non-volatile spintronic device and circuit -- 2.1 SPICE formulation with new nano-scale NVM devices -- 2.1.1 Traditional modified nodal analysis -- 2.1.2 New MNA with non-volatile state variables -- 2.2 STT-MTJ device and model -- 2.2.1 STT-MTJ -- 2.2.2 STT-RAM -- 2.2.3 Topological insulator -- 2.3 Domain wall device and model -- 2.3.1 Magnetization reversal -- 2.3.2 MTJ resistance -- 2.3.3 Domain wall propagation -- 2.3.4 Circular domain wall nanowire -- 2.4 Spintronic storage -- 2.4.1 Spintronic memory -- 2.4.2 Spintronic readout -- 2.5 Spintronic logic -- 2.5.1 XOR -- 2.5.2 Adder -- 2.5.3 Multiplier -- 2.5.4 LUT -- 2.6 Spintronic interconnect -- 2.6.1 Coding-based interconnect -- 2.6.2 Domain wall-based encoder/decoder -- 2.6.3 Performance evaluation -- 2.7 References --
3. In-memory data encryption -- 3.1 In-memory advanced encryption standard -- 3.1.1 Fundamental of AES -- 3.1.2 Domain wall nanowire-based AES computing -- 3.1.3 Pipelined AES by domain wall nanowire -- 3.1.4 Performance evaluation -- 3.2 Domain wall-based SIMON block cipher -- 3.2.1 Fundamental of SIMON block cipher -- 3.2.2 Hardware stages -- 3.2.3 Round counter -- 3.2.4 Control signals -- 3.2.5 Key expansion -- 3.2.6 Encryption -- 3.2.7 Performance evaluation -- 3.3 References --
4. In-memory data analytics -- 4.1 In-memory machine learning -- 4.1.1 Extreme learning machine -- 4.1.2 MapReduce-based matrix multiplication -- 4.1.3 Domain wall-based hardware mapping -- 4.1.4 Performance evaluation -- 4.2 In-memory face recognition -- 4.2.1 Energy-efficient STT-MRAM with Spare-represented data -- 4.2.2 QoS-aware adaptive current scaling -- 4.2.3 STT-RAM based hardware mapping -- 4.2.4 Performance evaluation -- 4.3 References -- Authors' biographies.
Abstract: Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBKE733
Total holds: 0

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Part of: Synthesis digital library of engineering and computer science.

Includes bibliographical references and index.

1. Introduction -- 1.1 Memory wall -- 1.2 Traditional semiconductor memory -- 1.2.1 Overview -- 1.2.2 Nano-scale limitations -- 1.3 Non-volatile spintronic memory -- 1.3.1 Basic magnetization process -- 1.3.2 Magnetization damping -- 1.3.3 Spin-transfer torque -- 1.3.4 Magnetization dynamics -- 1.3.5 Domain wall propagation -- 1.4 Traditional memory architecture -- 1.5 Non-volatile in-memory computing architecture -- 1.6 References --

2. Non-volatile spintronic device and circuit -- 2.1 SPICE formulation with new nano-scale NVM devices -- 2.1.1 Traditional modified nodal analysis -- 2.1.2 New MNA with non-volatile state variables -- 2.2 STT-MTJ device and model -- 2.2.1 STT-MTJ -- 2.2.2 STT-RAM -- 2.2.3 Topological insulator -- 2.3 Domain wall device and model -- 2.3.1 Magnetization reversal -- 2.3.2 MTJ resistance -- 2.3.3 Domain wall propagation -- 2.3.4 Circular domain wall nanowire -- 2.4 Spintronic storage -- 2.4.1 Spintronic memory -- 2.4.2 Spintronic readout -- 2.5 Spintronic logic -- 2.5.1 XOR -- 2.5.2 Adder -- 2.5.3 Multiplier -- 2.5.4 LUT -- 2.6 Spintronic interconnect -- 2.6.1 Coding-based interconnect -- 2.6.2 Domain wall-based encoder/decoder -- 2.6.3 Performance evaluation -- 2.7 References --

3. In-memory data encryption -- 3.1 In-memory advanced encryption standard -- 3.1.1 Fundamental of AES -- 3.1.2 Domain wall nanowire-based AES computing -- 3.1.3 Pipelined AES by domain wall nanowire -- 3.1.4 Performance evaluation -- 3.2 Domain wall-based SIMON block cipher -- 3.2.1 Fundamental of SIMON block cipher -- 3.2.2 Hardware stages -- 3.2.3 Round counter -- 3.2.4 Control signals -- 3.2.5 Key expansion -- 3.2.6 Encryption -- 3.2.7 Performance evaluation -- 3.3 References --

4. In-memory data analytics -- 4.1 In-memory machine learning -- 4.1.1 Extreme learning machine -- 4.1.2 MapReduce-based matrix multiplication -- 4.1.3 Domain wall-based hardware mapping -- 4.1.4 Performance evaluation -- 4.2 In-memory face recognition -- 4.2.1 Energy-efficient STT-MRAM with Spare-represented data -- 4.2.2 QoS-aware adaptive current scaling -- 4.2.3 STT-RAM based hardware mapping -- 4.2.4 Performance evaluation -- 4.3 References -- Authors' biographies.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.

Also available in print.

Title from PDF title page (viewed on December 5, 2016).

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha