Nuclear fusion
By: Morse, Edward.
Series: Graduate texts in physics. / edited by Kurt H. Becker.Publisher: Switzerland Springer 2018Description: xxii, 512p.ISBN: 9783319981703.Subject(s): Nuclear fusionDDC classification: 539.7 | M835n Summary: The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse's research in both magnetic and inertial confinement fusion, working with the world's top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Books | PK Kelkar Library, IIT Kanpur | General Stacks | 539.7 M835n (Browse shelf) | Available | A184184 |
Browsing PK Kelkar Library, IIT Kanpur Shelves , Collection code: General Stacks Close shelf browser
539.7 M45e [v.86] Elementary theory of nuclear shell structure | 539.7 M565L LASER COOLING AND TRAPPING | 539.7 M588mE v.86 Nuclear theory [v.86] | 539.7 M835n Nuclear fusion | 539.7 M966n Nuclear reactor physics | 539.7 M96n Nuclear reactor physics | 539.7 M96n v.86 Nuclear reactor physics [v.86] |
The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse's research in both magnetic and inertial confinement fusion, working with the world's top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.
There are no comments for this item.