Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Dynamical evolution of galaxies

By: Zhang, Xiaolei.
Publisher: Berlin Walter De Gruyter 2018Description: xiv, 323p.ISBN: 9783110525199.Subject(s): Galaxy evolution | Fluid mechanicsDDC classification: 530 | Z612d Summary: This research monograph presents a new dynamical framework for the study of secular morphological evolution of galaxies along the Hubble sequence. Classical approaches based on Boltzmann’s kinetic equation, as well as on its moment-equation descendants the Euler and Navier-Stokes fluid equations, are inadequate for treating the maintenance and long-term evolution of systems containing self-organized structures such as galactic density-wave modes. A global and synthetic approach, incorporating correlated fluctuations of the constituent particles during a nonequilibrium phase transition, is adopted to supplement the continuum treatment. The cutting-edge research combining analytical, N-body simulational, and observational aspects, as well as the fundamental-physics connections it provides, make this work a valuable reference for researchers and graduate students in astronomy, astrophysics, cosmology, many-body physics, complexity theory, and other related fields. Contents Dynamical Drivers of Galaxy Evolution N-Body Simulations of Galaxy Evolution Astrophysical Implications of the Dynamical Theory Putting It All Together Concluding Remarks Appendix: Relation to Kinetics and Fluid Mechanics
List(s) this item appears in: New Arrival May 28 to June 10, 2018
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur
General Stacks 530 Z612d (Browse shelf) Available A183571
Total holds: 0

This research monograph presents a new dynamical framework for the study of secular morphological evolution of galaxies along the Hubble sequence. Classical approaches based on Boltzmann’s kinetic equation, as well as on its moment-equation descendants the Euler and Navier-Stokes fluid equations, are inadequate for treating the maintenance and long-term evolution of systems containing self-organized structures such as galactic density-wave modes. A global and synthetic approach, incorporating correlated fluctuations of the constituent particles during a nonequilibrium phase transition, is adopted to supplement the continuum treatment. The cutting-edge research combining analytical, N-body simulational, and observational aspects, as well as the fundamental-physics connections it provides, make this work a valuable reference for researchers and graduate students in astronomy, astrophysics, cosmology, many-body physics, complexity theory, and other related fields.

Contents
Dynamical Drivers of Galaxy Evolution
N-Body Simulations of Galaxy Evolution
Astrophysical Implications of the Dynamical Theory
Putting It All Together
Concluding Remarks
Appendix: Relation to Kinetics and Fluid Mechanics

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha