Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Design and Optimization of Passive UHF RFID Systems

By: Curty, Jari-Pascal [author.].
Contributor(s): Declercq, Michel [author.] | Dehollain, Catherine [author.] | Joehl, Norbert [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Boston, MA : Springer US, 2007.Description: X, 148 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387447100.Subject(s): Engineering | Electrical engineering | Microwaves | Optical engineering | Electronics | Microelectronics | Electronic circuits | Engineering | Signal, Image and Speech Processing | Microwaves, RF and Optical Engineering | Circuits and Systems | Electronics and Microelectronics, Instrumentation | Electrical Engineering | Communications Engineering, NetworksDDC classification: 621.382 Online resources: Click here to access online
Contents:
Wireless Power Transmission -- Analysis of the Modified-Greinacher Rectifier -- to RFID -- Backscattering architecture and choice of modulation type -- Backscattering modulation analysis -- RFID Tag design -- High frequency interrogator architecture and analysis -- Conclusion.
In: Springer eBooksSummary: Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. Active tags require an internal power source, while passive tags do not. Design and Optimization of UHF RFID Systems considers the analysis, design and optimization of UHF passive RFID systems for long-range applications. There are many key aspects thoroughly described in the text: Wireless power transmission Tag-to-reader backscattering communication Reader and tag architectures and IC design. Wireless power transmission is studied using a rectifier (a fundamental tag building-block) for which there has been a proven prediction model developed. Proposed is a theoretical analysis of possible backscattering modulations, as well as an experimental procedure to measure how the impedance modulation at the tag side, affects the signal at the reader. Finally, a complete tag design achieving a read range of 12 m at 2.45 GHz (4 W EIRP) is provided. At the time of writing, the results of this design outperform any other available IC tag.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK9779
Total holds: 0

Wireless Power Transmission -- Analysis of the Modified-Greinacher Rectifier -- to RFID -- Backscattering architecture and choice of modulation type -- Backscattering modulation analysis -- RFID Tag design -- High frequency interrogator architecture and analysis -- Conclusion.

Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. Active tags require an internal power source, while passive tags do not. Design and Optimization of UHF RFID Systems considers the analysis, design and optimization of UHF passive RFID systems for long-range applications. There are many key aspects thoroughly described in the text: Wireless power transmission Tag-to-reader backscattering communication Reader and tag architectures and IC design. Wireless power transmission is studied using a rectifier (a fundamental tag building-block) for which there has been a proven prediction model developed. Proposed is a theoretical analysis of possible backscattering modulations, as well as an experimental procedure to measure how the impedance modulation at the tag side, affects the signal at the reader. Finally, a complete tag design achieving a read range of 12 m at 2.45 GHz (4 W EIRP) is provided. At the time of writing, the results of this design outperform any other available IC tag.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha