Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Design Automation Methods and Tools for Microfluidics-Based Biochips

Contributor(s): Chakrabarty, Krishnendu [editor.] | Zeng, Jun [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Dordrecht : Springer Netherlands, 2006.Description: IX, 403 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781402051234.Subject(s): Engineering | Biotechnology | Biophysics | Biological physics | Fluid mechanics | Electronics | Microelectronics | Electronic circuits | Biomedical engineering | Engineering | Electronics and Microelectronics, Instrumentation | Biomedical Engineering | Circuits and Systems | Biotechnology | Engineering Fluid Dynamics | Biophysics and Biological PhysicsDDC classification: 621.381 Online resources: Click here to access online
Contents:
MICROFLUIDICS-BASED BIOCHIPS: TECHNOLOGY ISSUES, IMPLEMENTATION PLATFORMS, AND DESIGN AUTOMATION CHALLENGES -- MODELING AND SIMULATION OF ELECTRIFIED DROPLETS AND ITS APPLICATION TO COMPUTER-AIDED DESIGN OF DIGITAL MICROFLUIDICS -- MODELING, SIMULATION AND OPTIMIZATION OF ELECTROWETTING -- ALGORITHMS IN FASTSTOKES AND ITS APPLICATION TO MICROMACHINED DEVICE SIMULATION -- COMPOSABLE BEHAVIORAL MODELS AND SCHEMATIC-BASED SIMULATION OF ELECTROKINETIC LAB-ON-A-CHIP SYSTEMS -- FFTSVD: A FAST MULTISCALE BOUNDARY ELEMENT METHOD SOLVER SUITABLE FOR BIO-MEMS AND BIOMOLECULE SIMULATION -- MACROMODEL GENERATION FOR BIOMEMS COMPONENTS USING A STABILIZED BALANCED TRUNCATION PLUS TRAJECTORY PIECEWISE LINEAR APPROACH -- SYSTEM-LEVEL SIMULATION OF FLOW INDUCED DISPERSION IN LAB-ON-A-CHIP SYSTEMS -- MICROFLUIDIC INJECTOR MODELS BASED ON ARTIFICIAL NEURAL NETWORKS -- COMPUTER-AIDED OPTIMIZATION OF DNA ARRAY DESIGN AND MANUFACTURING -- SYNTHESIS OF MULTIPLEXED BIOFLUIDIC MICROCHIPS -- MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS -- PERFORMANCE CHARACTERIZATION OF A RECONFIGURABLE PLANAR ARRAY DIGITAL MICROFLUIDIC SYSTEM -- A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS.
In: Springer eBooksSummary: Microfluidics-based biochips, also known as lab-on-a-chip or bio-MEMS, are becoming increasingly popular for DNA analysis, clinical diagnostics, and the detection/manipulation of bio-molecules. As the use of microfluidics-based biochips increases, their complexity is expected to become significant due to the need for multiple and concurrent assays on the chip, as well as more sophisticated control mechanisms for resource management. Time-to-market and fault tolerance are also expected to emerge as design considerations. As a result, current full-custom design techniques will not scale well for larger designs. There is a need to deliver the same level of CAD support to the biochip designer that the semiconductor industry now takes for granted. Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on various aspects of biochip design automation. Topics include device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; reconfiguration methods.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK8897
Total holds: 0

MICROFLUIDICS-BASED BIOCHIPS: TECHNOLOGY ISSUES, IMPLEMENTATION PLATFORMS, AND DESIGN AUTOMATION CHALLENGES -- MODELING AND SIMULATION OF ELECTRIFIED DROPLETS AND ITS APPLICATION TO COMPUTER-AIDED DESIGN OF DIGITAL MICROFLUIDICS -- MODELING, SIMULATION AND OPTIMIZATION OF ELECTROWETTING -- ALGORITHMS IN FASTSTOKES AND ITS APPLICATION TO MICROMACHINED DEVICE SIMULATION -- COMPOSABLE BEHAVIORAL MODELS AND SCHEMATIC-BASED SIMULATION OF ELECTROKINETIC LAB-ON-A-CHIP SYSTEMS -- FFTSVD: A FAST MULTISCALE BOUNDARY ELEMENT METHOD SOLVER SUITABLE FOR BIO-MEMS AND BIOMOLECULE SIMULATION -- MACROMODEL GENERATION FOR BIOMEMS COMPONENTS USING A STABILIZED BALANCED TRUNCATION PLUS TRAJECTORY PIECEWISE LINEAR APPROACH -- SYSTEM-LEVEL SIMULATION OF FLOW INDUCED DISPERSION IN LAB-ON-A-CHIP SYSTEMS -- MICROFLUIDIC INJECTOR MODELS BASED ON ARTIFICIAL NEURAL NETWORKS -- COMPUTER-AIDED OPTIMIZATION OF DNA ARRAY DESIGN AND MANUFACTURING -- SYNTHESIS OF MULTIPLEXED BIOFLUIDIC MICROCHIPS -- MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS -- PERFORMANCE CHARACTERIZATION OF A RECONFIGURABLE PLANAR ARRAY DIGITAL MICROFLUIDIC SYSTEM -- A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS.

Microfluidics-based biochips, also known as lab-on-a-chip or bio-MEMS, are becoming increasingly popular for DNA analysis, clinical diagnostics, and the detection/manipulation of bio-molecules. As the use of microfluidics-based biochips increases, their complexity is expected to become significant due to the need for multiple and concurrent assays on the chip, as well as more sophisticated control mechanisms for resource management. Time-to-market and fault tolerance are also expected to emerge as design considerations. As a result, current full-custom design techniques will not scale well for larger designs. There is a need to deliver the same level of CAD support to the biochip designer that the semiconductor industry now takes for granted. Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on various aspects of biochip design automation. Topics include device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; reconfiguration methods.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha