Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Photon-based Nanoscience and Nanobiotechnology

Contributor(s): Dubowski, Jan J [editor.] | Tanev, Stoyan [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: NATO Science Series: 239Publisher: Dordrecht : Springer Netherlands, 2006.Description: IX, 362 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781402055232.Other title: Proceedings of the NATO Advanced Study Institute on Photon-based Nanoscience and Technology: from Atomic Level Manipulation to Materials Synthesis and Nano-Biodevice Manufacturing (Photon-NST'2005), Sherbrooke, Quebec, Canada, 19-29 September 2005.Subject(s): Engineering | Biotechnology | Biophysics | Biological physics | Physical measurements | Measurement | Optics | Optoelectronics | Plasmons (Physics) | Nanotechnology | Materials science | Engineering | Nanotechnology and Microengineering | Optics, Optoelectronics, Plasmonics and Optical Devices | Materials Science, general | Biotechnology | Biophysics and Biological Physics | Measurement Science and InstrumentationDDC classification: 620.5 Online resources: Click here to access online
Contents:
PHYSICAL AND CHEMICAL ASPECTS OF LASER-MATERIALS INTERACTIONS -- ATTOSECOND CONTROL OF ELECTRONS - THE BASIS OF ATTOSECOND SCIENCE -- FUNDAMENTALS OF NANOBIOPHOTONICS -- NONLINEAR OPTICAL PHYSICS AND APPLICATIONS OF THE PLASMONIC RESPONSE IN METAL NANOPARTICLES -- FINITE-DIFFERENCE TIME-DOMAIN MODELING OF LIGHT SCATTERING FROM BIOLOGICAL CELLS CONTAINING GOLD NANOPARTICLES -- PHOTONIC AND NON-PHOTONIC BASED NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS -- QUANTUM DOT BIO-TEMPLATE FOR RAPID DETECTION OF PATHOGENIC SUBSTANCES -- APPLICATIONS OF FREE-ELECTRON LASERS IN BIOLOGICAL SCIENCES, MEDICINE AND MATERIALS SCIENCE -- LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS -- PHOTOPHYSICAL PROCESSES THAT ACTIVATE SELECTIVE CHANGES IN PHOTOSTRUCTURABLE GLASS CERAMIC MATERIAL PROPERTIES -- MOLECULAR DESIGN OF POLYMERS FOR LASER STRUCTURING AND THIN OXIDE FILMS BY PULSED LASER DEPOSITION AS MODEL SYSTEM FOR ELECTROCHEMICAL APPLICATIONS -- THREE-DIMENSIONAL MICRO AND NANOCHIPS FABRICATED BY FEMTOSEDOND LASER FOR BIOMEDICAL APPLICATIONS -- PHOTO-ASSISTED PROCESSES FROM NANO SIZE COLLOID SOLS -- CONTROLLING THE SURFACE PLASMON RESONANCES IN METAL NANOPARTICLES BY LASER LIGHT -- A SUMMARY OF CANADIAN NANOMEDICINE RESEARCH FUNDING: STRENGTHS AND NEEDS.
In: Springer eBooksSummary: Light has always played a significant role in the synthesis of materials and formation of small-scale solid structures. The invention of holographic and phase mask projection has enabled engineers to fabricate devices with characteristic features much smaller than the wavelength of the light used for processing. A further reduction of device dimensions has been achieved by implementing the processes that rely strongly on the non-linear effects of light-matter interaction. The intention of this book was to provide the Reader, primarily graduate students and young researchers in materials engineering, bio(chem)physics, medical physics and biophysics, with a set of articles reviewing state-of-the art research and recent advancements in the field of photon-matter interaction for micro/nanomaterials synthesis and manipulation of properties of biological and inorganic materials at the atomic level. Photon-based nanoscience and related technologies have created exciting opportunities for the fabrication and characterization of nano(bio)material devices and systems, and it is expected to significantly contribute to the development of Nanobiophotonics and Nanomedicine.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK8575
Total holds: 0

PHYSICAL AND CHEMICAL ASPECTS OF LASER-MATERIALS INTERACTIONS -- ATTOSECOND CONTROL OF ELECTRONS - THE BASIS OF ATTOSECOND SCIENCE -- FUNDAMENTALS OF NANOBIOPHOTONICS -- NONLINEAR OPTICAL PHYSICS AND APPLICATIONS OF THE PLASMONIC RESPONSE IN METAL NANOPARTICLES -- FINITE-DIFFERENCE TIME-DOMAIN MODELING OF LIGHT SCATTERING FROM BIOLOGICAL CELLS CONTAINING GOLD NANOPARTICLES -- PHOTONIC AND NON-PHOTONIC BASED NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS -- QUANTUM DOT BIO-TEMPLATE FOR RAPID DETECTION OF PATHOGENIC SUBSTANCES -- APPLICATIONS OF FREE-ELECTRON LASERS IN BIOLOGICAL SCIENCES, MEDICINE AND MATERIALS SCIENCE -- LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS -- PHOTOPHYSICAL PROCESSES THAT ACTIVATE SELECTIVE CHANGES IN PHOTOSTRUCTURABLE GLASS CERAMIC MATERIAL PROPERTIES -- MOLECULAR DESIGN OF POLYMERS FOR LASER STRUCTURING AND THIN OXIDE FILMS BY PULSED LASER DEPOSITION AS MODEL SYSTEM FOR ELECTROCHEMICAL APPLICATIONS -- THREE-DIMENSIONAL MICRO AND NANOCHIPS FABRICATED BY FEMTOSEDOND LASER FOR BIOMEDICAL APPLICATIONS -- PHOTO-ASSISTED PROCESSES FROM NANO SIZE COLLOID SOLS -- CONTROLLING THE SURFACE PLASMON RESONANCES IN METAL NANOPARTICLES BY LASER LIGHT -- A SUMMARY OF CANADIAN NANOMEDICINE RESEARCH FUNDING: STRENGTHS AND NEEDS.

Light has always played a significant role in the synthesis of materials and formation of small-scale solid structures. The invention of holographic and phase mask projection has enabled engineers to fabricate devices with characteristic features much smaller than the wavelength of the light used for processing. A further reduction of device dimensions has been achieved by implementing the processes that rely strongly on the non-linear effects of light-matter interaction. The intention of this book was to provide the Reader, primarily graduate students and young researchers in materials engineering, bio(chem)physics, medical physics and biophysics, with a set of articles reviewing state-of-the art research and recent advancements in the field of photon-matter interaction for micro/nanomaterials synthesis and manipulation of properties of biological and inorganic materials at the atomic level. Photon-based nanoscience and related technologies have created exciting opportunities for the fabrication and characterization of nano(bio)material devices and systems, and it is expected to significantly contribute to the development of Nanobiophotonics and Nanomedicine.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha