Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Cellular Automaton Modeling of Biological Pattern Formation : Characterization, Applications, and Analysis /

By: Deutsch, Andreas [author.].
Contributor(s): Dormann, Sabine [author.2] | SpringerLink (Online service)0.
Material type: materialTypeLabelBookSeries: Modeling and Simulation in Science, Engineering and Technology0.Publisher: Boston, MA : Birkh�user Boston, 2005. Description: XXIII, 331 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780817644154.Subject(s): Life sciences | Computer simulation | Applied mathematics | Engineering mathematics | Mathematical models | Biomathematics.1 | Life Sciences.2 | Life Sciences, general.2 | Mathematical and Computational Biology.2 | Mathematical Modeling and Industrial Mathematics.2 | Physiological, Cellular and Medical Topics.2 | Applications of Mathematics.2 | Simulation and Modeling.1DDC classification: 570 Online resources: Click here to access online
Contents:
General Principles, Theories, and Models of Pattern Formation -- and Outline -- On the Origin of Patterns -- Mathematical Modeling of Biological Pattern Formation -- Cellular Automaton Modeling -- Cellular Automata -- Applications -- Random Movement -- Growth Processes -- Adhesive Cell Interaction -- Alignment and Cellular Swarming -- Pigment Cell Pattern Formation -- Tissue and Tumor Development -- Turing Patterns and Excitable Media -- Discussion and Outlook.
In: Springer eBooks0Summary: This book focuses on a challenging application field of cellular automata: pattern formation in biological systems, such as the growth of microorganisms, dynamics of cellular tissue and tumors, and formation of pigment cell patterns. These phenomena, resulting from complex cellular interactions, cannot be deduced solely from experimental analysis, but can be more easily examined using mathematical models, in particular, cellular automaton models. While there are various books treating cellular automaton modeling, this interdisciplinary work is the first one covering biological applications. The book is divided into three parts: Part I deals with general principles, theories, and models of pattern formation; Part II examines cellular automaton modeling; and Part III explains various applications. The models and analytic techniques described may be extended to other exciting applications in biology, medicine, and immunology. Key topics and features: * Provides an introduction and historical account of the principles of biological pattern formation (morphogenesis) * Gives an overview of mathematical modeling approaches to morphogenesis, and an introduction to cellular automata and analytic techniques * A supplementary web-based Java applet---Cellular Automaton Simulator---enables interactive simulation of various cellular automaton applications described in the book; available on the internet at www.biomodeling.info * Self-contained presentation is accessible to a broad audience; only basic calculus and linear algebra are required * Careful balance of theory, models, and applications useful to both experimentalists and theoreticians * Includes suggestions for further research topics The book is aimed at researchers, practitioners, and students in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science interested in a cellular automaton approach to biological modeling. The book's accessible presentation and interdisciplinary approach make it suitable for graduate and advanced undergraduate courses and seminars in mathematical biology, biomodeling, and biocomputing.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
PK Kelkar Library, IIT Kanpur
Available EBK6323
Total holds: 0

General Principles, Theories, and Models of Pattern Formation -- and Outline -- On the Origin of Patterns -- Mathematical Modeling of Biological Pattern Formation -- Cellular Automaton Modeling -- Cellular Automata -- Applications -- Random Movement -- Growth Processes -- Adhesive Cell Interaction -- Alignment and Cellular Swarming -- Pigment Cell Pattern Formation -- Tissue and Tumor Development -- Turing Patterns and Excitable Media -- Discussion and Outlook.

This book focuses on a challenging application field of cellular automata: pattern formation in biological systems, such as the growth of microorganisms, dynamics of cellular tissue and tumors, and formation of pigment cell patterns. These phenomena, resulting from complex cellular interactions, cannot be deduced solely from experimental analysis, but can be more easily examined using mathematical models, in particular, cellular automaton models. While there are various books treating cellular automaton modeling, this interdisciplinary work is the first one covering biological applications. The book is divided into three parts: Part I deals with general principles, theories, and models of pattern formation; Part II examines cellular automaton modeling; and Part III explains various applications. The models and analytic techniques described may be extended to other exciting applications in biology, medicine, and immunology. Key topics and features: * Provides an introduction and historical account of the principles of biological pattern formation (morphogenesis) * Gives an overview of mathematical modeling approaches to morphogenesis, and an introduction to cellular automata and analytic techniques * A supplementary web-based Java applet---Cellular Automaton Simulator---enables interactive simulation of various cellular automaton applications described in the book; available on the internet at www.biomodeling.info * Self-contained presentation is accessible to a broad audience; only basic calculus and linear algebra are required * Careful balance of theory, models, and applications useful to both experimentalists and theoreticians * Includes suggestions for further research topics The book is aimed at researchers, practitioners, and students in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science interested in a cellular automaton approach to biological modeling. The book's accessible presentation and interdisciplinary approach make it suitable for graduate and advanced undergraduate courses and seminars in mathematical biology, biomodeling, and biocomputing.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha