Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Advanced Linear Algebra

By: Roman, Steven [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Graduate Texts in Mathematics: 135Publisher: New York, NY : Springer New York, 2005.Edition: Second Edition.Description: XVI, 486 p. 18 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387274744.Subject(s): Mathematics | Matrix theory | Algebra | Mathematics | Linear and Multilinear Algebras, Matrix TheoryDDC classification: 512.5 Online resources: Click here to access online
Contents:
Preliminaries -- Preliminaries -- Basic Linear Algebra -- Vector Spaces -- Linear Transformations -- The Isomorphism Theorems -- Modules I: Basic Properties -- Modules II: Free and Noetherian Modules -- Modules over a Principal Ideal Domain -- The Structure of a Linear Operator -- Eigenvalues and Eigenvectors -- Real and Complex Inner Product Spaces -- Structure Theory for Normal Operators -- Topics -- Metric Vector Spaces: The Theory of Bilinear Forms -- Metric Spaces -- Hilbert Spaces -- Tensor Products -- Positive Solutions to Linear Systems: Convexity and Separation -- Affine Geometry -- Operator Factorizations: QR and Singular Value -- The Umbral Calculus.
In: Springer eBooksSummary: This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with many important applications. The new edition has been thoroughly rewritten, both in the text and exercise sets, and contains new chapters on convexity and separation, positive solutions to linear systems, singular values and QR decompostion. Treatments of tensor products and the umbral calculus have been greatly expanded and discussions of determinants, complexification of a real vector space, Schur's lemma and Gersgorin disks have been added. The author is Emeritus Professor of Mathematics, having taught at a number of universities, including MIT, UC Santa Barabara, the University of South Florida, the California State University at Fullerton and UC Irvine. He has written 27 books in mathematics at various levels and 9 books on computing. His interests lie mostly in the areas of algebra, set theory and logic, probability and finance.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK6270
Total holds: 0

Preliminaries -- Preliminaries -- Basic Linear Algebra -- Vector Spaces -- Linear Transformations -- The Isomorphism Theorems -- Modules I: Basic Properties -- Modules II: Free and Noetherian Modules -- Modules over a Principal Ideal Domain -- The Structure of a Linear Operator -- Eigenvalues and Eigenvectors -- Real and Complex Inner Product Spaces -- Structure Theory for Normal Operators -- Topics -- Metric Vector Spaces: The Theory of Bilinear Forms -- Metric Spaces -- Hilbert Spaces -- Tensor Products -- Positive Solutions to Linear Systems: Convexity and Separation -- Affine Geometry -- Operator Factorizations: QR and Singular Value -- The Umbral Calculus.

This is a graduate textbook covering an especially broad range of topics. The first part of the book contains a careful but rapid discussion of the basics of linear algebra, including vector spaces, linear transformations, quotient spaces, and isomorphism theorems. The author then proceeds to modules, emphasizing a comparison with vector spaces. A thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory follows, culminating in the finite dimensional spectral theorem for normal operators. The second part of the book is a collection of topics, including metric vector spaces, metric spaces, Hilbert spaces, tensor products, and affine geometry. The last chapter discusses the umbral calculus, an area of modern algebra with many important applications. The new edition has been thoroughly rewritten, both in the text and exercise sets, and contains new chapters on convexity and separation, positive solutions to linear systems, singular values and QR decompostion. Treatments of tensor products and the umbral calculus have been greatly expanded and discussions of determinants, complexification of a real vector space, Schur's lemma and Gersgorin disks have been added. The author is Emeritus Professor of Mathematics, having taught at a number of universities, including MIT, UC Santa Barabara, the University of South Florida, the California State University at Fullerton and UC Irvine. He has written 27 books in mathematics at various levels and 9 books on computing. His interests lie mostly in the areas of algebra, set theory and logic, probability and finance.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha