Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Regulation of Gene Expression in Plants : The Role of Transcript Structure and Processing /

Contributor(s): Bassett, Carole L [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Boston, MA : Springer US, 2007.Description: XVI, 196 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387356402.Subject(s): Life sciences | Plant science | Botany | Plant anatomy | Plant development | Plant genetics | Life Sciences | Plant Genetics & Genomics | Plant Anatomy/Development | Plant SciencesDDC classification: 581.35 Online resources: Click here to access online
Contents:
The Regulation of Gene Expression in Plants and Animals -- Multiple Transcript Initiation as a Mechanism for Regulating Gene Expression -- Alternative Processing as a Mechanism for Regulating Gene Expression -- Messenger RNA 3?-end Formation and the Regulation of Gene Expression -- An Overview of Small RNAs -- Control of Gene Expression by mRNA Transport and Turnover.
In: Springer eBooksSummary: Except for one area of gene expression control, plant research has significantly fallen behind studies in insects and vertebrates. The advances made in animal gene expression control have benefited plant research, as we continue to find that much of the machinery and mechanisms controlling gene expression have been preserved in all eukaryotes. Through comparison, we have learned that certain aspects of gene regulation are shared by plants and animals, i.e. both contain introns separating the coding regions of most genes and both utilize similar machinery to process the introns to form mature mRNAs. Yet there are some interesting differences in gene structure and regulation between plants and animals. For example, unlike animal genes, plant genes are generally much smaller with fewer and smaller introns. Regulation of Gene Expression in Plants presents some of the most recent, novel and fascinating examples of transcriptional and posttranscriptional control of gene expression in plants and, where appropriate, provides comparison to notable examples of animal gene regulation. About the Editors: Dr. Carole L. Bassett is a molecular biologist at the USDA – ARS’s Appalachian Fruit Research Station in Kearneysville, West Virginia. Her research emphasizes the identification and characterization of different mechanisms controlling gene expression in plants. She has worked on flowering in the Japanese morning glory (Ipomoea nil L.) and in fruit quality and development in peach (Prunus persica L. [Batsch]). Her current area of interest is in understanding how genes respond to cold and drought stress in peach and apple (Malus X domestica) and using this information to reduce the impact of adverse environmental conditions on orchard production and fruit quality.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK3852
Total holds: 0

The Regulation of Gene Expression in Plants and Animals -- Multiple Transcript Initiation as a Mechanism for Regulating Gene Expression -- Alternative Processing as a Mechanism for Regulating Gene Expression -- Messenger RNA 3?-end Formation and the Regulation of Gene Expression -- An Overview of Small RNAs -- Control of Gene Expression by mRNA Transport and Turnover.

Except for one area of gene expression control, plant research has significantly fallen behind studies in insects and vertebrates. The advances made in animal gene expression control have benefited plant research, as we continue to find that much of the machinery and mechanisms controlling gene expression have been preserved in all eukaryotes. Through comparison, we have learned that certain aspects of gene regulation are shared by plants and animals, i.e. both contain introns separating the coding regions of most genes and both utilize similar machinery to process the introns to form mature mRNAs. Yet there are some interesting differences in gene structure and regulation between plants and animals. For example, unlike animal genes, plant genes are generally much smaller with fewer and smaller introns. Regulation of Gene Expression in Plants presents some of the most recent, novel and fascinating examples of transcriptional and posttranscriptional control of gene expression in plants and, where appropriate, provides comparison to notable examples of animal gene regulation. About the Editors: Dr. Carole L. Bassett is a molecular biologist at the USDA – ARS’s Appalachian Fruit Research Station in Kearneysville, West Virginia. Her research emphasizes the identification and characterization of different mechanisms controlling gene expression in plants. She has worked on flowering in the Japanese morning glory (Ipomoea nil L.) and in fruit quality and development in peach (Prunus persica L. [Batsch]). Her current area of interest is in understanding how genes respond to cold and drought stress in peach and apple (Malus X domestica) and using this information to reduce the impact of adverse environmental conditions on orchard production and fruit quality.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha