Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Histone Deacetylases : Transcriptional Regulation and Other Cellular Functions /

Contributor(s): Verdin, Eric [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Cancer Drug Discovery and Development: Publisher: Totowa, NJ : Humana Press, 2006.Description: 352 p. 63 illus., 1 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781597450249.Subject(s): Medicine | Cancer research | Biomedicine | Cancer ResearchDDC classification: 614.5999 Online resources: Click here to access online
Contents:
Class I Histone Deacetylases -- Histone Deacetylase 1 -- Biochemistry of Multiprotein HDAC Complexes -- The Biology of HDAC3 -- The Biology of HDAC8, a Unique Class I Histone Deacetylase -- Class II Histone Deacetylases -- Regulation of Muscle Gene Expression by Histone Deacetylases -- The Class IIa Histone Deacetylases -- Histone Deacetylases in the Response to Misfolded Proteins -- Class III Histone Deacetylases -- Evolution of Sirtuins From Archaea to Vertebrates -- Structure of the Sir2 Family of NAD+-Dependent Histone/Protein Deacetylases -- The Enzymology of SIR2 Proteins -- The Class III Protein Deacetylases -- Histone Deacetylase Inhibitors -- HDAC Inhibitors -- Cell Cycle Targets of Histone Deacetylase Inhibitors -- HDAC Inhibitors.
In: Springer eBooksSummary: The recent discoveries that established histone acetylation as a key regulatory mechanism for gene expression triggered a wave of interest in histone posttranslational modifications and led to the development of novel anticancer agents now in clinical trials. In Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions, a panel of leading investigators summarizes and synthesizes the new discoveries in this rapidly evolving field. The authors describe what has been learned about these proteins, including the identification of the enzymes, the elucidation of the enzymatic mechanisms of action, and the identification of their substrates and their partners. They also review the structures that have been solved for a number of enzymes-both alone and in complex with small-molecule inhibitors-and the biological roles of the several histone deacetylase (HDAC) genes that have been knocked out in mice. Authoritative and state-of-the-art, Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions constitutes a first landmark of what has been accomplished so far and sets a clear agenda for the full definition of HDAC roles in biology and disease in the years to come.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK2733
Total holds: 0

Class I Histone Deacetylases -- Histone Deacetylase 1 -- Biochemistry of Multiprotein HDAC Complexes -- The Biology of HDAC3 -- The Biology of HDAC8, a Unique Class I Histone Deacetylase -- Class II Histone Deacetylases -- Regulation of Muscle Gene Expression by Histone Deacetylases -- The Class IIa Histone Deacetylases -- Histone Deacetylases in the Response to Misfolded Proteins -- Class III Histone Deacetylases -- Evolution of Sirtuins From Archaea to Vertebrates -- Structure of the Sir2 Family of NAD+-Dependent Histone/Protein Deacetylases -- The Enzymology of SIR2 Proteins -- The Class III Protein Deacetylases -- Histone Deacetylase Inhibitors -- HDAC Inhibitors -- Cell Cycle Targets of Histone Deacetylase Inhibitors -- HDAC Inhibitors.

The recent discoveries that established histone acetylation as a key regulatory mechanism for gene expression triggered a wave of interest in histone posttranslational modifications and led to the development of novel anticancer agents now in clinical trials. In Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions, a panel of leading investigators summarizes and synthesizes the new discoveries in this rapidly evolving field. The authors describe what has been learned about these proteins, including the identification of the enzymes, the elucidation of the enzymatic mechanisms of action, and the identification of their substrates and their partners. They also review the structures that have been solved for a number of enzymes-both alone and in complex with small-molecule inhibitors-and the biological roles of the several histone deacetylase (HDAC) genes that have been knocked out in mice. Authoritative and state-of-the-art, Histone Deacetylases: Transcriptional Regulation and Other Cellular Functions constitutes a first landmark of what has been accomplished so far and sets a clear agenda for the full definition of HDAC roles in biology and disease in the years to come.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha