Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

CryptoGraphics : Exploiting Graphics Cards for Security /

By: Cook, Debra L [author.].
Contributor(s): Keromytis, Angelos D [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Advances in Information Security: 20Publisher: Boston, MA : Springer US, 2006.Description: XVI, 140 p. 20 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387341897.Subject(s): Computer science | Computer organization | Computer communication systems | Data structures (Computer science) | Data encryption (Computer science) | Coding theory | Computer Science | Data Encryption | Data Structures, Cryptology and Information Theory | Computer Communication Networks | Computer Systems Organization and Communication Networks | Coding and Information Theory | Data StructuresDDC classification: 005.82 Online resources: Click here to access online
Contents:
Graphical Processing Units -- Motivation -- Encryption in GPUs -- Remotely Keyed Cryptographics -- Related Issues -- Extensions -- Conclusions.
In: Springer eBooksSummary: CryptoGraphics: Exploiting Graphics Cards for Security explores the potential for implementing ciphers within graphics processing units (GPUs), and describes the relevance of GPU-based encryption and decryption to the security of applications involving remote displays. As a result of the increasing processing power of GPUs, research involving the use of GPUs for general purpose computing has arisen. While GPUs do not support the range of operations found in CPUs, their processing power has grown to exceed that of CPUs and their designs are evolving to increase their programmability. GPUs are especially attractive for applications requiring a large quantity of parallel processing. This work extends such research by considering the use of GPUs as a parallel processor for encrypting data. The authors evaluate the operations found in symmetric and asymmetric key ciphers to determine if encryption can be programmed in existing GPUs. While certain operations make it impossible to implement some ciphers in a GPU, the operations used in most block ciphers, including AES, can be performed in GPUs. A detailed description and code for a GPU based implementation of AES is provided. The feasibility of GPU-based encryption allows the authors to explore the use of a GPU as a trusted system component. The motivation for using a GPU as a trusted component, including the applicability to thin-client and remote conferencing applications, is discussed. By enabling encryption and decryption in a GPU, unencrypted display data can be confined to the GPU to avoid exposing it to any malware running on the operating system. A prototype implementation of GPU-based decryption for protecting displays exported to untrusted clients is described. Issues and solutions related to fully securing data on untrusted clients, including the protection of user input, are also discussed. CryptoGraphics: Exploiting Graphics Cards for Security is designed for a professional audience of researchers and practitioners in industry. This book is also suitable as a secondary text for advanced-level students in computer science.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBK189
Total holds: 0

Graphical Processing Units -- Motivation -- Encryption in GPUs -- Remotely Keyed Cryptographics -- Related Issues -- Extensions -- Conclusions.

CryptoGraphics: Exploiting Graphics Cards for Security explores the potential for implementing ciphers within graphics processing units (GPUs), and describes the relevance of GPU-based encryption and decryption to the security of applications involving remote displays. As a result of the increasing processing power of GPUs, research involving the use of GPUs for general purpose computing has arisen. While GPUs do not support the range of operations found in CPUs, their processing power has grown to exceed that of CPUs and their designs are evolving to increase their programmability. GPUs are especially attractive for applications requiring a large quantity of parallel processing. This work extends such research by considering the use of GPUs as a parallel processor for encrypting data. The authors evaluate the operations found in symmetric and asymmetric key ciphers to determine if encryption can be programmed in existing GPUs. While certain operations make it impossible to implement some ciphers in a GPU, the operations used in most block ciphers, including AES, can be performed in GPUs. A detailed description and code for a GPU based implementation of AES is provided. The feasibility of GPU-based encryption allows the authors to explore the use of a GPU as a trusted system component. The motivation for using a GPU as a trusted component, including the applicability to thin-client and remote conferencing applications, is discussed. By enabling encryption and decryption in a GPU, unencrypted display data can be confined to the GPU to avoid exposing it to any malware running on the operating system. A prototype implementation of GPU-based decryption for protecting displays exported to untrusted clients is described. Issues and solutions related to fully securing data on untrusted clients, including the protection of user input, are also discussed. CryptoGraphics: Exploiting Graphics Cards for Security is designed for a professional audience of researchers and practitioners in industry. This book is also suitable as a secondary text for advanced-level students in computer science.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha