Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

The air engine : stirling cycle for a sustainable future

By: Organ, Allan J.
Material type: materialTypeLabelBookSeries: Woodhead publishing in mechanical engineering. Publisher: Boca Raton CRC Press 2007Description: xxvi, 276p.ISBN: 9781420066722.Subject(s): Engine -- Air | Stirling enginesDDC classification: 621.42 | Or3a Summary: Two centuries after its original invention, the Stirling engine has finally emerged as a commercial reality. Providing an alternative to centralized power generation, the Stirling is now employed as the core component in domestic CHP (combined heat and power) technology, which offers substantial savings in raw energy utilization and in doing so also addresses current concerns regarding hydrocarbon consumption and greenhouse gas emissions. The successful use of the Stirling requires the addressing of a range of issues, including the long-standing mismatch between inherently favorable internal efficiency and wasteful external heating provision; the dearth of data on heat transfer and flow related to the task of first-principles design; and its limited RPM capability when operating with air (and nitrogen) as working fluids. All of these matters are explored in depth in The Air Engine: Stirling Cycle Power for a Sustainable Future. The account also includes previously unpublished insights into the character and potential deployment of two related engines -- the pressure-wave and thermal-lag.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur
General Stacks 621.42 Or3a (Browse shelf) Available A159527
Total holds: 0

Two centuries after its original invention, the Stirling engine has finally emerged as a commercial reality. Providing an alternative to centralized power generation, the Stirling is now employed as the core component in domestic CHP (combined heat and power) technology, which offers substantial savings in raw energy utilization and in doing so also addresses current concerns regarding hydrocarbon consumption and greenhouse gas emissions. The successful use of the Stirling requires the addressing of a range of issues, including the long-standing mismatch between inherently favorable internal efficiency and wasteful external heating provision; the dearth of data on heat transfer and flow related to the task of first-principles design; and its limited RPM capability when operating with air (and nitrogen) as working fluids. All of these matters are explored in depth in The Air Engine: Stirling Cycle Power for a Sustainable Future. The account also includes previously unpublished insights into the character and potential deployment of two related engines -- the pressure-wave and thermal-lag.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha