Normal view MARC view ISBD view

Deep reinforcement learning hands-on : apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, alphago zero and more

By: Lapan, Maxim.
Publisher: Birmingham Packet Publishing 2018Description: xvi, 523p.ISBN: 9781788834247.Subject(s): Machine learning | Reinforcement learning | Natural language processing (Computer science)DDC classification: 006.31 | L311d Summary: Key Features Explore deep reinforcement learning (RL), from the first principles to the latest algorithms Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms Keep up with the very latest industry developments, including AI-driven chatbots Book Description Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google's use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace. Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
List(s) this item appears in: New arrival Sep. 23 to 29, 2019 | New arrival 23 to 29 September 2019
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books P K Kelkar Library, IIT Kanpur
General Stacks 006.31 L311d (Browse shelf) Checked out to Faiz Hamid (E0561500) 29/10/2020 A184819
Total holds: 0

Key Features

Explore deep reinforcement learning (RL), from the first principles to the latest algorithms
Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms
Keep up with the very latest industry developments, including AI-driven chatbots

Book Description

Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google's use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace.

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha