Normal view MARC view ISBD view

Universal quantum computing : supervening decoherence-surmounting uncertainty

By: Amoroso, Richard L.
Publisher: New Jersey World Scientific Publishing 2017Description: xxiv, 608p.ISBN: 9789813145993.Subject(s): Quantum theory | Quantum computingDDC classification: 006.3843 | Am68u Summary: This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, hundreds of patents, thousands of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from a myriad of other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!
List(s) this item appears in: New Arrival 1-7 Jan. 2018
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books P K Kelkar Library, IIT Kanpur
General Stacks 006.3843 Am68u (Browse shelf) Available A183387
Total holds: 2

This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, hundreds of patents, thousands of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from a myriad of other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha